Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's work through the steps of proving the law of cosines for [tex]\(\triangle ABC\)[/tex]:
1. Given Definitions by Trigonometric Ratios:
- By the definition of the sine ratio: [tex]\(\sin(A) = \frac{h}{b}\)[/tex]
- By the definition of the cosine ratio: [tex]\(\cos(A) = \frac{c + r}{b}\)[/tex]
2. Rewrite Each Trigonometric Equation:
- [tex]\(\sin(A) = \frac{h}{b}\)[/tex]
- [tex]\(\cos(A) = \frac{c + r}{b}\)[/tex]
3. Express in Terms of the Numerator:
- [tex]\(h = b \sin(A)\)[/tex]
- [tex]\(c + r = b \cos(A)\)[/tex]
4. Expression for Side [tex]\(r\)[/tex]:
- From [tex]\(c + r = b \cos(A)\)[/tex], solve for [tex]\(r\)[/tex]:
[tex]\[ r = b \cos(A) - c \][/tex]
5. Using the Law of Cosines:
- The law of cosines relates [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex]. According to the law of cosines:
[tex]\[ a^2 = b^2 + c^2 - 2bc \cos(A) \][/tex]
In summary, the steps in the proof are:
- Use trigonometric definitions to express [tex]\(h\)[/tex] and [tex]\(c + r\)[/tex] in terms of known quantities.
- Solve for [tex]\(r\)[/tex] in terms of [tex]\(b, c\)[/tex], and [tex]\(\cos(A)\)[/tex].
- Apply the law of cosines to relate [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex].
Correct Answer Selection:
1. Use the trigonometric definitions to rewrite each trigonometric equation in terms of the numerator.
2. Then, Carson can write an expression for side [tex]\(r\)[/tex] in terms of [tex]\(b \cos (A) - c\)[/tex].
3. Next, he can use the law of cosines to relate [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex].
Therefore, you should select:
1. "trigonometric definitions"
2. "r"
3. "the law of cosines"
1. Given Definitions by Trigonometric Ratios:
- By the definition of the sine ratio: [tex]\(\sin(A) = \frac{h}{b}\)[/tex]
- By the definition of the cosine ratio: [tex]\(\cos(A) = \frac{c + r}{b}\)[/tex]
2. Rewrite Each Trigonometric Equation:
- [tex]\(\sin(A) = \frac{h}{b}\)[/tex]
- [tex]\(\cos(A) = \frac{c + r}{b}\)[/tex]
3. Express in Terms of the Numerator:
- [tex]\(h = b \sin(A)\)[/tex]
- [tex]\(c + r = b \cos(A)\)[/tex]
4. Expression for Side [tex]\(r\)[/tex]:
- From [tex]\(c + r = b \cos(A)\)[/tex], solve for [tex]\(r\)[/tex]:
[tex]\[ r = b \cos(A) - c \][/tex]
5. Using the Law of Cosines:
- The law of cosines relates [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex]. According to the law of cosines:
[tex]\[ a^2 = b^2 + c^2 - 2bc \cos(A) \][/tex]
In summary, the steps in the proof are:
- Use trigonometric definitions to express [tex]\(h\)[/tex] and [tex]\(c + r\)[/tex] in terms of known quantities.
- Solve for [tex]\(r\)[/tex] in terms of [tex]\(b, c\)[/tex], and [tex]\(\cos(A)\)[/tex].
- Apply the law of cosines to relate [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex].
Correct Answer Selection:
1. Use the trigonometric definitions to rewrite each trigonometric equation in terms of the numerator.
2. Then, Carson can write an expression for side [tex]\(r\)[/tex] in terms of [tex]\(b \cos (A) - c\)[/tex].
3. Next, he can use the law of cosines to relate [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex].
Therefore, you should select:
1. "trigonometric definitions"
2. "r"
3. "the law of cosines"
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.