Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's work through the steps of proving the law of cosines for [tex]\(\triangle ABC\)[/tex]:
1. Given Definitions by Trigonometric Ratios:
- By the definition of the sine ratio: [tex]\(\sin(A) = \frac{h}{b}\)[/tex]
- By the definition of the cosine ratio: [tex]\(\cos(A) = \frac{c + r}{b}\)[/tex]
2. Rewrite Each Trigonometric Equation:
- [tex]\(\sin(A) = \frac{h}{b}\)[/tex]
- [tex]\(\cos(A) = \frac{c + r}{b}\)[/tex]
3. Express in Terms of the Numerator:
- [tex]\(h = b \sin(A)\)[/tex]
- [tex]\(c + r = b \cos(A)\)[/tex]
4. Expression for Side [tex]\(r\)[/tex]:
- From [tex]\(c + r = b \cos(A)\)[/tex], solve for [tex]\(r\)[/tex]:
[tex]\[ r = b \cos(A) - c \][/tex]
5. Using the Law of Cosines:
- The law of cosines relates [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex]. According to the law of cosines:
[tex]\[ a^2 = b^2 + c^2 - 2bc \cos(A) \][/tex]
In summary, the steps in the proof are:
- Use trigonometric definitions to express [tex]\(h\)[/tex] and [tex]\(c + r\)[/tex] in terms of known quantities.
- Solve for [tex]\(r\)[/tex] in terms of [tex]\(b, c\)[/tex], and [tex]\(\cos(A)\)[/tex].
- Apply the law of cosines to relate [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex].
Correct Answer Selection:
1. Use the trigonometric definitions to rewrite each trigonometric equation in terms of the numerator.
2. Then, Carson can write an expression for side [tex]\(r\)[/tex] in terms of [tex]\(b \cos (A) - c\)[/tex].
3. Next, he can use the law of cosines to relate [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex].
Therefore, you should select:
1. "trigonometric definitions"
2. "r"
3. "the law of cosines"
1. Given Definitions by Trigonometric Ratios:
- By the definition of the sine ratio: [tex]\(\sin(A) = \frac{h}{b}\)[/tex]
- By the definition of the cosine ratio: [tex]\(\cos(A) = \frac{c + r}{b}\)[/tex]
2. Rewrite Each Trigonometric Equation:
- [tex]\(\sin(A) = \frac{h}{b}\)[/tex]
- [tex]\(\cos(A) = \frac{c + r}{b}\)[/tex]
3. Express in Terms of the Numerator:
- [tex]\(h = b \sin(A)\)[/tex]
- [tex]\(c + r = b \cos(A)\)[/tex]
4. Expression for Side [tex]\(r\)[/tex]:
- From [tex]\(c + r = b \cos(A)\)[/tex], solve for [tex]\(r\)[/tex]:
[tex]\[ r = b \cos(A) - c \][/tex]
5. Using the Law of Cosines:
- The law of cosines relates [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex]. According to the law of cosines:
[tex]\[ a^2 = b^2 + c^2 - 2bc \cos(A) \][/tex]
In summary, the steps in the proof are:
- Use trigonometric definitions to express [tex]\(h\)[/tex] and [tex]\(c + r\)[/tex] in terms of known quantities.
- Solve for [tex]\(r\)[/tex] in terms of [tex]\(b, c\)[/tex], and [tex]\(\cos(A)\)[/tex].
- Apply the law of cosines to relate [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex].
Correct Answer Selection:
1. Use the trigonometric definitions to rewrite each trigonometric equation in terms of the numerator.
2. Then, Carson can write an expression for side [tex]\(r\)[/tex] in terms of [tex]\(b \cos (A) - c\)[/tex].
3. Next, he can use the law of cosines to relate [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex].
Therefore, you should select:
1. "trigonometric definitions"
2. "r"
3. "the law of cosines"
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.