Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's work through the steps of proving the law of cosines for [tex]\(\triangle ABC\)[/tex]:
1. Given Definitions by Trigonometric Ratios:
- By the definition of the sine ratio: [tex]\(\sin(A) = \frac{h}{b}\)[/tex]
- By the definition of the cosine ratio: [tex]\(\cos(A) = \frac{c + r}{b}\)[/tex]
2. Rewrite Each Trigonometric Equation:
- [tex]\(\sin(A) = \frac{h}{b}\)[/tex]
- [tex]\(\cos(A) = \frac{c + r}{b}\)[/tex]
3. Express in Terms of the Numerator:
- [tex]\(h = b \sin(A)\)[/tex]
- [tex]\(c + r = b \cos(A)\)[/tex]
4. Expression for Side [tex]\(r\)[/tex]:
- From [tex]\(c + r = b \cos(A)\)[/tex], solve for [tex]\(r\)[/tex]:
[tex]\[ r = b \cos(A) - c \][/tex]
5. Using the Law of Cosines:
- The law of cosines relates [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex]. According to the law of cosines:
[tex]\[ a^2 = b^2 + c^2 - 2bc \cos(A) \][/tex]
In summary, the steps in the proof are:
- Use trigonometric definitions to express [tex]\(h\)[/tex] and [tex]\(c + r\)[/tex] in terms of known quantities.
- Solve for [tex]\(r\)[/tex] in terms of [tex]\(b, c\)[/tex], and [tex]\(\cos(A)\)[/tex].
- Apply the law of cosines to relate [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex].
Correct Answer Selection:
1. Use the trigonometric definitions to rewrite each trigonometric equation in terms of the numerator.
2. Then, Carson can write an expression for side [tex]\(r\)[/tex] in terms of [tex]\(b \cos (A) - c\)[/tex].
3. Next, he can use the law of cosines to relate [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex].
Therefore, you should select:
1. "trigonometric definitions"
2. "r"
3. "the law of cosines"
1. Given Definitions by Trigonometric Ratios:
- By the definition of the sine ratio: [tex]\(\sin(A) = \frac{h}{b}\)[/tex]
- By the definition of the cosine ratio: [tex]\(\cos(A) = \frac{c + r}{b}\)[/tex]
2. Rewrite Each Trigonometric Equation:
- [tex]\(\sin(A) = \frac{h}{b}\)[/tex]
- [tex]\(\cos(A) = \frac{c + r}{b}\)[/tex]
3. Express in Terms of the Numerator:
- [tex]\(h = b \sin(A)\)[/tex]
- [tex]\(c + r = b \cos(A)\)[/tex]
4. Expression for Side [tex]\(r\)[/tex]:
- From [tex]\(c + r = b \cos(A)\)[/tex], solve for [tex]\(r\)[/tex]:
[tex]\[ r = b \cos(A) - c \][/tex]
5. Using the Law of Cosines:
- The law of cosines relates [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex]. According to the law of cosines:
[tex]\[ a^2 = b^2 + c^2 - 2bc \cos(A) \][/tex]
In summary, the steps in the proof are:
- Use trigonometric definitions to express [tex]\(h\)[/tex] and [tex]\(c + r\)[/tex] in terms of known quantities.
- Solve for [tex]\(r\)[/tex] in terms of [tex]\(b, c\)[/tex], and [tex]\(\cos(A)\)[/tex].
- Apply the law of cosines to relate [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex].
Correct Answer Selection:
1. Use the trigonometric definitions to rewrite each trigonometric equation in terms of the numerator.
2. Then, Carson can write an expression for side [tex]\(r\)[/tex] in terms of [tex]\(b \cos (A) - c\)[/tex].
3. Next, he can use the law of cosines to relate [tex]\(a, b, c\)[/tex], and angle [tex]\(A\)[/tex].
Therefore, you should select:
1. "trigonometric definitions"
2. "r"
3. "the law of cosines"
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.