Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the magnitude and direction of the electrical force between two point charges, we use Coulomb's law.
Coulomb's law states that the magnitude of the electrical force [tex]\( F \)[/tex] between two point charges is given by:
[tex]\[ F = k \frac{|q_1 \cdot q_2|}{d^2} \][/tex]
where:
- [tex]\( k \)[/tex] is Coulomb's constant, approximately [tex]\( 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \)[/tex],
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the two charges,
- [tex]\( d \)[/tex] is the distance between the charges.
Given data:
- Charge [tex]\( q_1 = 5 \, \mu C = 5 \times 10^{-6} \, \text{C} \)[/tex],
- Charge [tex]\( q_2 = 2 \, \mu C = 2 \times 10^{-6} \, \text{C} \)[/tex],
- Distance [tex]\( d = 3 \times 10^{-2} \, \text{m} = 0.03 \, \text{m} \)[/tex].
Substitute these values into Coulomb's law:
[tex]\[ F = (8.99 \times 10^9) \frac{|(5 \times 10^{-6}) \cdot (2 \times 10^{-6})|}{(0.03)^2} \][/tex]
Calculate the numerator:
[tex]\[ (5 \times 10^{-6}) \times (2 \times 10^{-6}) = 10 \times 10^{-12} = 1 \times 10^{-11} \, \text{C}^2 \][/tex]
Calculate the denominator:
[tex]\[ (0.03)^2 = 9 \times 10^{-4} \, \text{m}^2 \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ \frac{1 \times 10^{-11}}{9 \times 10^{-4}} = 1.1111 \times 10^{-8} \, \text{C}^2/\text{m}^2 \][/tex]
Finally, multiply by Coulomb's constant:
[tex]\[ F = 8.99 \times 10^9 \times 1.1111 \times 10^{-8} = 99.8889 \, \text{N} \][/tex]
So, the magnitude of the force is approximately [tex]\( 99.8889 \, \text{N} \)[/tex].
Since both charges are positive, they repel each other. The problem states that charge [tex]\( q_1 \)[/tex] is located west of charge [tex]\( q_2 \)[/tex]. Therefore, the direction of the force on [tex]\( q_2 \)[/tex] is towards the east.
Thus, the electrical force [tex]\( F_e \)[/tex] applied by [tex]\( q_1 \)[/tex] on [tex]\( q_2 \)[/tex] has a magnitude of approximately [tex]\( 100 \, \text{N} \)[/tex] and the direction is east.
The correct answer from the provided options is:
Magnitude: 100 N, Direction: east
Coulomb's law states that the magnitude of the electrical force [tex]\( F \)[/tex] between two point charges is given by:
[tex]\[ F = k \frac{|q_1 \cdot q_2|}{d^2} \][/tex]
where:
- [tex]\( k \)[/tex] is Coulomb's constant, approximately [tex]\( 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \)[/tex],
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the two charges,
- [tex]\( d \)[/tex] is the distance between the charges.
Given data:
- Charge [tex]\( q_1 = 5 \, \mu C = 5 \times 10^{-6} \, \text{C} \)[/tex],
- Charge [tex]\( q_2 = 2 \, \mu C = 2 \times 10^{-6} \, \text{C} \)[/tex],
- Distance [tex]\( d = 3 \times 10^{-2} \, \text{m} = 0.03 \, \text{m} \)[/tex].
Substitute these values into Coulomb's law:
[tex]\[ F = (8.99 \times 10^9) \frac{|(5 \times 10^{-6}) \cdot (2 \times 10^{-6})|}{(0.03)^2} \][/tex]
Calculate the numerator:
[tex]\[ (5 \times 10^{-6}) \times (2 \times 10^{-6}) = 10 \times 10^{-12} = 1 \times 10^{-11} \, \text{C}^2 \][/tex]
Calculate the denominator:
[tex]\[ (0.03)^2 = 9 \times 10^{-4} \, \text{m}^2 \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ \frac{1 \times 10^{-11}}{9 \times 10^{-4}} = 1.1111 \times 10^{-8} \, \text{C}^2/\text{m}^2 \][/tex]
Finally, multiply by Coulomb's constant:
[tex]\[ F = 8.99 \times 10^9 \times 1.1111 \times 10^{-8} = 99.8889 \, \text{N} \][/tex]
So, the magnitude of the force is approximately [tex]\( 99.8889 \, \text{N} \)[/tex].
Since both charges are positive, they repel each other. The problem states that charge [tex]\( q_1 \)[/tex] is located west of charge [tex]\( q_2 \)[/tex]. Therefore, the direction of the force on [tex]\( q_2 \)[/tex] is towards the east.
Thus, the electrical force [tex]\( F_e \)[/tex] applied by [tex]\( q_1 \)[/tex] on [tex]\( q_2 \)[/tex] has a magnitude of approximately [tex]\( 100 \, \text{N} \)[/tex] and the direction is east.
The correct answer from the provided options is:
Magnitude: 100 N, Direction: east
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.