Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the problem, we need to use Coulomb's law, which states that the force [tex]\( F \)[/tex] between two charges [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] separated by a distance [tex]\( d \)[/tex] is given by:
[tex]\[ F = k \frac{q_1 q_2}{d^2} \][/tex]
where [tex]\( k \)[/tex] is Coulomb's constant. Let's start by calculating the forces in each scenario given in the table.
1. For charges [tex]\( q \)[/tex] and [tex]\( q \)[/tex] separated by distance [tex]\( d \)[/tex]:
[tex]\[ F = k \frac{q \cdot q}{d^2} = k \frac{q^2}{d^2} \][/tex]
This force is denoted as [tex]\( F \)[/tex].
2. For charges [tex]\( q \)[/tex] and [tex]\( 2q \)[/tex] separated by distance [tex]\( d \)[/tex]:
[tex]\[ W = k \frac{q \cdot 2q}{d^2} = k \frac{2q^2}{d^2} = 2F \][/tex]
3. For charges [tex]\( q \)[/tex] and [tex]\( q \)[/tex] separated by distance [tex]\( 2d \)[/tex]:
[tex]\[ X = k \frac{q \cdot q}{(2d)^2} = k \frac{q^2}{4d^2} = \frac{F}{4} \][/tex]
4. For charges [tex]\( 3q \)[/tex] and [tex]\( q \)[/tex] separated by distance [tex]\( d \)[/tex]:
[tex]\[ Y = k \frac{3q \cdot q}{d^2} = k \frac{3q^2}{d^2} = 3F \][/tex]
5. For charges [tex]\( q \)[/tex] and [tex]\( q \)[/tex] separated by distance [tex]\( 3d \)[/tex]:
[tex]\[ Z = k \frac{q \cdot q}{(3d)^2} = k \frac{q^2}{9d^2} = \frac{F}{9} \][/tex]
Now, let's rank these forces from greatest to least:
- [tex]\( 3F \)[/tex] (Y)
- [tex]\( 2F \)[/tex] (W)
- [tex]\( \frac{F}{4} \)[/tex] (X)
- [tex]\( \frac{F}{9} \)[/tex] (Z)
So, the list of forces from greatest to least is:
[tex]\[ Y, W, X, Z \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{Y, W, X, Z} \][/tex]
[tex]\[ F = k \frac{q_1 q_2}{d^2} \][/tex]
where [tex]\( k \)[/tex] is Coulomb's constant. Let's start by calculating the forces in each scenario given in the table.
1. For charges [tex]\( q \)[/tex] and [tex]\( q \)[/tex] separated by distance [tex]\( d \)[/tex]:
[tex]\[ F = k \frac{q \cdot q}{d^2} = k \frac{q^2}{d^2} \][/tex]
This force is denoted as [tex]\( F \)[/tex].
2. For charges [tex]\( q \)[/tex] and [tex]\( 2q \)[/tex] separated by distance [tex]\( d \)[/tex]:
[tex]\[ W = k \frac{q \cdot 2q}{d^2} = k \frac{2q^2}{d^2} = 2F \][/tex]
3. For charges [tex]\( q \)[/tex] and [tex]\( q \)[/tex] separated by distance [tex]\( 2d \)[/tex]:
[tex]\[ X = k \frac{q \cdot q}{(2d)^2} = k \frac{q^2}{4d^2} = \frac{F}{4} \][/tex]
4. For charges [tex]\( 3q \)[/tex] and [tex]\( q \)[/tex] separated by distance [tex]\( d \)[/tex]:
[tex]\[ Y = k \frac{3q \cdot q}{d^2} = k \frac{3q^2}{d^2} = 3F \][/tex]
5. For charges [tex]\( q \)[/tex] and [tex]\( q \)[/tex] separated by distance [tex]\( 3d \)[/tex]:
[tex]\[ Z = k \frac{q \cdot q}{(3d)^2} = k \frac{q^2}{9d^2} = \frac{F}{9} \][/tex]
Now, let's rank these forces from greatest to least:
- [tex]\( 3F \)[/tex] (Y)
- [tex]\( 2F \)[/tex] (W)
- [tex]\( \frac{F}{4} \)[/tex] (X)
- [tex]\( \frac{F}{9} \)[/tex] (Z)
So, the list of forces from greatest to least is:
[tex]\[ Y, W, X, Z \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{Y, W, X, Z} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.