Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the problem, we need to use Coulomb's law, which states that the force [tex]\( F \)[/tex] between two charges [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] separated by a distance [tex]\( d \)[/tex] is given by:
[tex]\[ F = k \frac{q_1 q_2}{d^2} \][/tex]
where [tex]\( k \)[/tex] is Coulomb's constant. Let's start by calculating the forces in each scenario given in the table.
1. For charges [tex]\( q \)[/tex] and [tex]\( q \)[/tex] separated by distance [tex]\( d \)[/tex]:
[tex]\[ F = k \frac{q \cdot q}{d^2} = k \frac{q^2}{d^2} \][/tex]
This force is denoted as [tex]\( F \)[/tex].
2. For charges [tex]\( q \)[/tex] and [tex]\( 2q \)[/tex] separated by distance [tex]\( d \)[/tex]:
[tex]\[ W = k \frac{q \cdot 2q}{d^2} = k \frac{2q^2}{d^2} = 2F \][/tex]
3. For charges [tex]\( q \)[/tex] and [tex]\( q \)[/tex] separated by distance [tex]\( 2d \)[/tex]:
[tex]\[ X = k \frac{q \cdot q}{(2d)^2} = k \frac{q^2}{4d^2} = \frac{F}{4} \][/tex]
4. For charges [tex]\( 3q \)[/tex] and [tex]\( q \)[/tex] separated by distance [tex]\( d \)[/tex]:
[tex]\[ Y = k \frac{3q \cdot q}{d^2} = k \frac{3q^2}{d^2} = 3F \][/tex]
5. For charges [tex]\( q \)[/tex] and [tex]\( q \)[/tex] separated by distance [tex]\( 3d \)[/tex]:
[tex]\[ Z = k \frac{q \cdot q}{(3d)^2} = k \frac{q^2}{9d^2} = \frac{F}{9} \][/tex]
Now, let's rank these forces from greatest to least:
- [tex]\( 3F \)[/tex] (Y)
- [tex]\( 2F \)[/tex] (W)
- [tex]\( \frac{F}{4} \)[/tex] (X)
- [tex]\( \frac{F}{9} \)[/tex] (Z)
So, the list of forces from greatest to least is:
[tex]\[ Y, W, X, Z \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{Y, W, X, Z} \][/tex]
[tex]\[ F = k \frac{q_1 q_2}{d^2} \][/tex]
where [tex]\( k \)[/tex] is Coulomb's constant. Let's start by calculating the forces in each scenario given in the table.
1. For charges [tex]\( q \)[/tex] and [tex]\( q \)[/tex] separated by distance [tex]\( d \)[/tex]:
[tex]\[ F = k \frac{q \cdot q}{d^2} = k \frac{q^2}{d^2} \][/tex]
This force is denoted as [tex]\( F \)[/tex].
2. For charges [tex]\( q \)[/tex] and [tex]\( 2q \)[/tex] separated by distance [tex]\( d \)[/tex]:
[tex]\[ W = k \frac{q \cdot 2q}{d^2} = k \frac{2q^2}{d^2} = 2F \][/tex]
3. For charges [tex]\( q \)[/tex] and [tex]\( q \)[/tex] separated by distance [tex]\( 2d \)[/tex]:
[tex]\[ X = k \frac{q \cdot q}{(2d)^2} = k \frac{q^2}{4d^2} = \frac{F}{4} \][/tex]
4. For charges [tex]\( 3q \)[/tex] and [tex]\( q \)[/tex] separated by distance [tex]\( d \)[/tex]:
[tex]\[ Y = k \frac{3q \cdot q}{d^2} = k \frac{3q^2}{d^2} = 3F \][/tex]
5. For charges [tex]\( q \)[/tex] and [tex]\( q \)[/tex] separated by distance [tex]\( 3d \)[/tex]:
[tex]\[ Z = k \frac{q \cdot q}{(3d)^2} = k \frac{q^2}{9d^2} = \frac{F}{9} \][/tex]
Now, let's rank these forces from greatest to least:
- [tex]\( 3F \)[/tex] (Y)
- [tex]\( 2F \)[/tex] (W)
- [tex]\( \frac{F}{4} \)[/tex] (X)
- [tex]\( \frac{F}{9} \)[/tex] (Z)
So, the list of forces from greatest to least is:
[tex]\[ Y, W, X, Z \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{Y, W, X, Z} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.