Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To calculate the standard deviation of the difference [tex]\( D = X - Y \)[/tex], where [tex]\( X \)[/tex] and [tex]\( Y \)[/tex] are independent random variables, we follow several steps. Here is a detailed breakdown:
1. Understand the Given Information:
- The random variable [tex]\( X \)[/tex] represents the number of frogs and has a mean [tex]\( \mu_X = 28 \)[/tex] and a standard deviation [tex]\( \sigma_X = 2.7 \)[/tex].
- The random variable [tex]\( Y \)[/tex] represents the number of koi and has a mean [tex]\( \mu_Y = 15 \)[/tex] and a standard deviation [tex]\( \sigma_Y = 1.6 \)[/tex].
2. Calculate the Mean of [tex]\( D \)[/tex]:
The mean of the difference [tex]\( D = X - Y \)[/tex] is given by:
[tex]\[ \mu_D = \mu_X - \mu_Y \][/tex]
However, for this problem, we are not required to report [tex]\(\mu_D\)[/tex], so we focus on the standard deviation.
3. Calculate the Variance of [tex]\( D \)[/tex]:
Since [tex]\( X \)[/tex] and [tex]\( Y \)[/tex] are independent, their variances add when calculating the variance of the difference [tex]\( D \)[/tex]:
[tex]\[ \sigma_D^2 = \sigma_X^2 + \sigma_Y^2 \][/tex]
Substituting the given values:
[tex]\[ \sigma_D^2 = (2.7)^2 + (1.6)^2 \][/tex]
[tex]\[ \sigma_D^2 = 7.29 + 2.56 \][/tex]
[tex]\[ \sigma_D^2 = 9.85 \][/tex]
4. Calculate the Standard Deviation of [tex]\( D \)[/tex]:
To find the standard deviation, we take the square root of the variance:
[tex]\[ \sigma_D = \sqrt{9.85} \][/tex]
[tex]\[ \sigma_D \approx 3.1384709652950433 \][/tex]
5. Interpret the Result:
The standard deviation [tex]\(\sigma_D \approx 3.14\)[/tex] means that the difference between the number of frogs and koi can be expected to vary by approximately 3.14 from the mean difference.
Thus, the correct answer is:
[tex]\[ \sigma_D = 3.1 \quad \text{(rounded to 1 decimal place)} \][/tex]
Interpretation: This pond can expect the difference of frogs and koi to vary by approximately 3.1 from the mean.
Therefore, the correct answer choice is:
[tex]\[ \dot{\sigma}_0 = 3.1; \, \text{this pond can expect the difference of frogs and koi to vary by approximately 3.1 from the mean.} \][/tex]
1. Understand the Given Information:
- The random variable [tex]\( X \)[/tex] represents the number of frogs and has a mean [tex]\( \mu_X = 28 \)[/tex] and a standard deviation [tex]\( \sigma_X = 2.7 \)[/tex].
- The random variable [tex]\( Y \)[/tex] represents the number of koi and has a mean [tex]\( \mu_Y = 15 \)[/tex] and a standard deviation [tex]\( \sigma_Y = 1.6 \)[/tex].
2. Calculate the Mean of [tex]\( D \)[/tex]:
The mean of the difference [tex]\( D = X - Y \)[/tex] is given by:
[tex]\[ \mu_D = \mu_X - \mu_Y \][/tex]
However, for this problem, we are not required to report [tex]\(\mu_D\)[/tex], so we focus on the standard deviation.
3. Calculate the Variance of [tex]\( D \)[/tex]:
Since [tex]\( X \)[/tex] and [tex]\( Y \)[/tex] are independent, their variances add when calculating the variance of the difference [tex]\( D \)[/tex]:
[tex]\[ \sigma_D^2 = \sigma_X^2 + \sigma_Y^2 \][/tex]
Substituting the given values:
[tex]\[ \sigma_D^2 = (2.7)^2 + (1.6)^2 \][/tex]
[tex]\[ \sigma_D^2 = 7.29 + 2.56 \][/tex]
[tex]\[ \sigma_D^2 = 9.85 \][/tex]
4. Calculate the Standard Deviation of [tex]\( D \)[/tex]:
To find the standard deviation, we take the square root of the variance:
[tex]\[ \sigma_D = \sqrt{9.85} \][/tex]
[tex]\[ \sigma_D \approx 3.1384709652950433 \][/tex]
5. Interpret the Result:
The standard deviation [tex]\(\sigma_D \approx 3.14\)[/tex] means that the difference between the number of frogs and koi can be expected to vary by approximately 3.14 from the mean difference.
Thus, the correct answer is:
[tex]\[ \sigma_D = 3.1 \quad \text{(rounded to 1 decimal place)} \][/tex]
Interpretation: This pond can expect the difference of frogs and koi to vary by approximately 3.1 from the mean.
Therefore, the correct answer choice is:
[tex]\[ \dot{\sigma}_0 = 3.1; \, \text{this pond can expect the difference of frogs and koi to vary by approximately 3.1 from the mean.} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.