Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To calculate the standard deviation of the difference [tex]\( D = X - Y \)[/tex], where [tex]\( X \)[/tex] and [tex]\( Y \)[/tex] are independent random variables, we follow several steps. Here is a detailed breakdown:
1. Understand the Given Information:
- The random variable [tex]\( X \)[/tex] represents the number of frogs and has a mean [tex]\( \mu_X = 28 \)[/tex] and a standard deviation [tex]\( \sigma_X = 2.7 \)[/tex].
- The random variable [tex]\( Y \)[/tex] represents the number of koi and has a mean [tex]\( \mu_Y = 15 \)[/tex] and a standard deviation [tex]\( \sigma_Y = 1.6 \)[/tex].
2. Calculate the Mean of [tex]\( D \)[/tex]:
The mean of the difference [tex]\( D = X - Y \)[/tex] is given by:
[tex]\[ \mu_D = \mu_X - \mu_Y \][/tex]
However, for this problem, we are not required to report [tex]\(\mu_D\)[/tex], so we focus on the standard deviation.
3. Calculate the Variance of [tex]\( D \)[/tex]:
Since [tex]\( X \)[/tex] and [tex]\( Y \)[/tex] are independent, their variances add when calculating the variance of the difference [tex]\( D \)[/tex]:
[tex]\[ \sigma_D^2 = \sigma_X^2 + \sigma_Y^2 \][/tex]
Substituting the given values:
[tex]\[ \sigma_D^2 = (2.7)^2 + (1.6)^2 \][/tex]
[tex]\[ \sigma_D^2 = 7.29 + 2.56 \][/tex]
[tex]\[ \sigma_D^2 = 9.85 \][/tex]
4. Calculate the Standard Deviation of [tex]\( D \)[/tex]:
To find the standard deviation, we take the square root of the variance:
[tex]\[ \sigma_D = \sqrt{9.85} \][/tex]
[tex]\[ \sigma_D \approx 3.1384709652950433 \][/tex]
5. Interpret the Result:
The standard deviation [tex]\(\sigma_D \approx 3.14\)[/tex] means that the difference between the number of frogs and koi can be expected to vary by approximately 3.14 from the mean difference.
Thus, the correct answer is:
[tex]\[ \sigma_D = 3.1 \quad \text{(rounded to 1 decimal place)} \][/tex]
Interpretation: This pond can expect the difference of frogs and koi to vary by approximately 3.1 from the mean.
Therefore, the correct answer choice is:
[tex]\[ \dot{\sigma}_0 = 3.1; \, \text{this pond can expect the difference of frogs and koi to vary by approximately 3.1 from the mean.} \][/tex]
1. Understand the Given Information:
- The random variable [tex]\( X \)[/tex] represents the number of frogs and has a mean [tex]\( \mu_X = 28 \)[/tex] and a standard deviation [tex]\( \sigma_X = 2.7 \)[/tex].
- The random variable [tex]\( Y \)[/tex] represents the number of koi and has a mean [tex]\( \mu_Y = 15 \)[/tex] and a standard deviation [tex]\( \sigma_Y = 1.6 \)[/tex].
2. Calculate the Mean of [tex]\( D \)[/tex]:
The mean of the difference [tex]\( D = X - Y \)[/tex] is given by:
[tex]\[ \mu_D = \mu_X - \mu_Y \][/tex]
However, for this problem, we are not required to report [tex]\(\mu_D\)[/tex], so we focus on the standard deviation.
3. Calculate the Variance of [tex]\( D \)[/tex]:
Since [tex]\( X \)[/tex] and [tex]\( Y \)[/tex] are independent, their variances add when calculating the variance of the difference [tex]\( D \)[/tex]:
[tex]\[ \sigma_D^2 = \sigma_X^2 + \sigma_Y^2 \][/tex]
Substituting the given values:
[tex]\[ \sigma_D^2 = (2.7)^2 + (1.6)^2 \][/tex]
[tex]\[ \sigma_D^2 = 7.29 + 2.56 \][/tex]
[tex]\[ \sigma_D^2 = 9.85 \][/tex]
4. Calculate the Standard Deviation of [tex]\( D \)[/tex]:
To find the standard deviation, we take the square root of the variance:
[tex]\[ \sigma_D = \sqrt{9.85} \][/tex]
[tex]\[ \sigma_D \approx 3.1384709652950433 \][/tex]
5. Interpret the Result:
The standard deviation [tex]\(\sigma_D \approx 3.14\)[/tex] means that the difference between the number of frogs and koi can be expected to vary by approximately 3.14 from the mean difference.
Thus, the correct answer is:
[tex]\[ \sigma_D = 3.1 \quad \text{(rounded to 1 decimal place)} \][/tex]
Interpretation: This pond can expect the difference of frogs and koi to vary by approximately 3.1 from the mean.
Therefore, the correct answer choice is:
[tex]\[ \dot{\sigma}_0 = 3.1; \, \text{this pond can expect the difference of frogs and koi to vary by approximately 3.1 from the mean.} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.