Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's solve this step-by-step to find the radius of the soccer ball.
### Step 1: Given Information
We are given that the volume [tex]\( V \)[/tex] of the soccer ball is [tex]\( 371 \)[/tex] cubic inches, and we are asked to use [tex]\( \pi = 3.14 \)[/tex]. We need to find the radius [tex]\( r \)[/tex].
### Step 2: Formula for the Volume of a Sphere
The formula for the volume of a sphere is:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
### Step 3: Plug in the Given Values
Substitute [tex]\( V = 371 \)[/tex] and [tex]\( \pi = 3.14 \)[/tex] into the formula:
[tex]\[ 371 = \frac{4}{3} \times 3.14 \times r^3 \][/tex]
### Step 4: Solve for [tex]\( r^3 \)[/tex]
First, simplify the right-hand side of the equation:
[tex]\[ \frac{4}{3} \times 3.14 = 4.18666667 \][/tex]
So we have:
[tex]\[ 371 = 4.18666667 \times r^3 \][/tex]
Next, isolate [tex]\( r^3 \)[/tex] by dividing both sides by 4.18666667:
[tex]\[ r^3 = \frac{371}{4.18666667} \][/tex]
[tex]\[ r^3 \approx 88.61465 \][/tex]
### Step 5: Take the Cube Root to Find [tex]\( r \)[/tex]
To find [tex]\( r \)[/tex], we take the cube root of [tex]\( r^3 \)[/tex]:
[tex]\[ r \approx \sqrt[3]{88.61465} \][/tex]
[tex]\[ r \approx 4.45829 \][/tex]
### Step 6: Round to the Nearest Tenth
Finally, we round this value to the nearest tenth:
[tex]\[ r \approx 4.5 \][/tex]
### Conclusion
The radius of the soccer ball, to the nearest tenth of an inch, is approximately [tex]\( 4.5 \)[/tex] inches.
Thus, the answer is:
B. 4.5 inches
### Step 1: Given Information
We are given that the volume [tex]\( V \)[/tex] of the soccer ball is [tex]\( 371 \)[/tex] cubic inches, and we are asked to use [tex]\( \pi = 3.14 \)[/tex]. We need to find the radius [tex]\( r \)[/tex].
### Step 2: Formula for the Volume of a Sphere
The formula for the volume of a sphere is:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
### Step 3: Plug in the Given Values
Substitute [tex]\( V = 371 \)[/tex] and [tex]\( \pi = 3.14 \)[/tex] into the formula:
[tex]\[ 371 = \frac{4}{3} \times 3.14 \times r^3 \][/tex]
### Step 4: Solve for [tex]\( r^3 \)[/tex]
First, simplify the right-hand side of the equation:
[tex]\[ \frac{4}{3} \times 3.14 = 4.18666667 \][/tex]
So we have:
[tex]\[ 371 = 4.18666667 \times r^3 \][/tex]
Next, isolate [tex]\( r^3 \)[/tex] by dividing both sides by 4.18666667:
[tex]\[ r^3 = \frac{371}{4.18666667} \][/tex]
[tex]\[ r^3 \approx 88.61465 \][/tex]
### Step 5: Take the Cube Root to Find [tex]\( r \)[/tex]
To find [tex]\( r \)[/tex], we take the cube root of [tex]\( r^3 \)[/tex]:
[tex]\[ r \approx \sqrt[3]{88.61465} \][/tex]
[tex]\[ r \approx 4.45829 \][/tex]
### Step 6: Round to the Nearest Tenth
Finally, we round this value to the nearest tenth:
[tex]\[ r \approx 4.5 \][/tex]
### Conclusion
The radius of the soccer ball, to the nearest tenth of an inch, is approximately [tex]\( 4.5 \)[/tex] inches.
Thus, the answer is:
B. 4.5 inches
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.