Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the discriminant and the number of real solutions for the quadratic equation [tex]\( 0 = x^2 - 4x + 5 \)[/tex], we follow these steps:
1. Identify the coefficients: The quadratic equation is in the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex]. Here, the coefficients are:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = -4 \)[/tex]
- [tex]\( c = 5 \)[/tex]
2. Calculate the discriminant: The discriminant [tex]\( \Delta \)[/tex] of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Plugging the coefficients into the formula, we get:
[tex]\[ \Delta = (-4)^2 - 4 \cdot 1 \cdot 5 \][/tex]
3. Simplify the discriminant:
[tex]\[ \Delta = 16 - 20 = -4 \][/tex]
4. Interpret the discriminant: The value of the discriminant tells us about the number and nature of the roots of the quadratic equation:
- If [tex]\( \Delta > 0 \)[/tex], there are two distinct real solutions.
- If [tex]\( \Delta = 0 \)[/tex], there is exactly one real solution (a repeated root).
- If [tex]\( \Delta < 0 \)[/tex], there are no real solutions; instead, there are two complex conjugate solutions.
Since the discriminant is [tex]\( -4 \)[/tex], which is less than zero ([tex]\( \Delta < 0 \)[/tex]), the quadratic equation [tex]\( 0 = x^2 - 4x + 5 \)[/tex] has no real solutions, but it has two complex conjugate solutions.
Thus, the correct answer is:
The discriminant is [tex]\(-4\)[/tex], so the equation has no real solutions.
1. Identify the coefficients: The quadratic equation is in the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex]. Here, the coefficients are:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = -4 \)[/tex]
- [tex]\( c = 5 \)[/tex]
2. Calculate the discriminant: The discriminant [tex]\( \Delta \)[/tex] of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Plugging the coefficients into the formula, we get:
[tex]\[ \Delta = (-4)^2 - 4 \cdot 1 \cdot 5 \][/tex]
3. Simplify the discriminant:
[tex]\[ \Delta = 16 - 20 = -4 \][/tex]
4. Interpret the discriminant: The value of the discriminant tells us about the number and nature of the roots of the quadratic equation:
- If [tex]\( \Delta > 0 \)[/tex], there are two distinct real solutions.
- If [tex]\( \Delta = 0 \)[/tex], there is exactly one real solution (a repeated root).
- If [tex]\( \Delta < 0 \)[/tex], there are no real solutions; instead, there are two complex conjugate solutions.
Since the discriminant is [tex]\( -4 \)[/tex], which is less than zero ([tex]\( \Delta < 0 \)[/tex]), the quadratic equation [tex]\( 0 = x^2 - 4x + 5 \)[/tex] has no real solutions, but it has two complex conjugate solutions.
Thus, the correct answer is:
The discriminant is [tex]\(-4\)[/tex], so the equation has no real solutions.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.