Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the given system of linear equations:
[tex]\[ \begin{cases} 4x + y = 16 \\ 2x + 3y = -2 \end{cases} \][/tex]
we can use the method of substitution or elimination, but here we'll use elimination for a straightforward solution.
1. Express the system of equations:
[tex]\[ \begin{cases} 4x + y = 16 \quad \text{(1)} \\ 2x + 3y = -2 \quad \text{(2)} \end{cases} \][/tex]
2. Multiply equation (2) by 2 to align the coefficients of [tex]\( x \)[/tex]:
[tex]\[ 4x + y = 16 \quad \text{(1)} \][/tex]
[tex]\[ 4x + 6y = -4 \quad \text{(3)} \][/tex]
3. Subtract equation (1) from equation (3):
[tex]\[ (4x + 6y) - (4x + y) = -4 - 16 \][/tex]
Simplify the left-hand side and the right-hand side:
[tex]\[ 4x + 6y - 4x - y = -20 \][/tex]
[tex]\[ 5y = -20 \][/tex]
Now, solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{-20}{5} = -4 \][/tex]
4. Substitute [tex]\( y = -4 \)[/tex] back into equation (1) to find [tex]\( x \)[/tex]:
[tex]\[ 4x + (-4) = 16 \][/tex]
Simplify:
[tex]\[ 4x - 4 = 16 \][/tex]
Add 4 to both sides:
[tex]\[ 4x = 20 \][/tex]
Divide by 4:
[tex]\[ x = \frac{20}{4} = 5 \][/tex]
5. Conclusion:
The solution to the system of equations is [tex]\( (x, y) = (5, -4) \)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{(5, -4)} \][/tex] which corresponds to option A.
[tex]\[ \begin{cases} 4x + y = 16 \\ 2x + 3y = -2 \end{cases} \][/tex]
we can use the method of substitution or elimination, but here we'll use elimination for a straightforward solution.
1. Express the system of equations:
[tex]\[ \begin{cases} 4x + y = 16 \quad \text{(1)} \\ 2x + 3y = -2 \quad \text{(2)} \end{cases} \][/tex]
2. Multiply equation (2) by 2 to align the coefficients of [tex]\( x \)[/tex]:
[tex]\[ 4x + y = 16 \quad \text{(1)} \][/tex]
[tex]\[ 4x + 6y = -4 \quad \text{(3)} \][/tex]
3. Subtract equation (1) from equation (3):
[tex]\[ (4x + 6y) - (4x + y) = -4 - 16 \][/tex]
Simplify the left-hand side and the right-hand side:
[tex]\[ 4x + 6y - 4x - y = -20 \][/tex]
[tex]\[ 5y = -20 \][/tex]
Now, solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{-20}{5} = -4 \][/tex]
4. Substitute [tex]\( y = -4 \)[/tex] back into equation (1) to find [tex]\( x \)[/tex]:
[tex]\[ 4x + (-4) = 16 \][/tex]
Simplify:
[tex]\[ 4x - 4 = 16 \][/tex]
Add 4 to both sides:
[tex]\[ 4x = 20 \][/tex]
Divide by 4:
[tex]\[ x = \frac{20}{4} = 5 \][/tex]
5. Conclusion:
The solution to the system of equations is [tex]\( (x, y) = (5, -4) \)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{(5, -4)} \][/tex] which corresponds to option A.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.