Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's find the length of the arc made by a central angle [tex]\(\theta = 11^\circ\)[/tex] in a circle with a radius [tex]\(r = 2500\, \text{km}\)[/tex].
### Step 1: Convert Degrees to Radians
To calculate the arc length, we first need to convert the angle from degrees to radians. Remember that:
[tex]\[ 1 \text{ degree} = \frac{\pi}{180} \text{ radians} \][/tex]
So, we convert [tex]\(11^\circ\)[/tex] to radians:
[tex]\[ \theta \text{ (in radians)} = 11 \times \frac{\pi}{180} \][/tex]
Using the value of [tex]\(\pi \approx 3.14159\)[/tex], we get:
[tex]\[ \theta \approx 11 \times 0.0174533 \approx 0.19198621771937624 \text{ radians} \][/tex]
### Step 2: Use the Arc Length Formula
The length of the arc [tex]\(s\)[/tex] is given by the formula:
[tex]\[ s = r \theta \][/tex]
where [tex]\(r\)[/tex] is the radius and [tex]\(\theta\)[/tex] is the angle in radians. Substituting the values we have:
[tex]\[ s = 2500 \times 0.19198621771937624 \approx 479.9655442984406 \text{ km} \][/tex]
### Step 3: Round to Two Significant Digits
Finally, we round the arc length to two significant digits:
[tex]\[ s \approx 479.97 \text{ km} \][/tex]
Thus, the approximate length of the arc is:
[tex]\[ s \approx 479.97 \text{ km} \][/tex]
### Step 1: Convert Degrees to Radians
To calculate the arc length, we first need to convert the angle from degrees to radians. Remember that:
[tex]\[ 1 \text{ degree} = \frac{\pi}{180} \text{ radians} \][/tex]
So, we convert [tex]\(11^\circ\)[/tex] to radians:
[tex]\[ \theta \text{ (in radians)} = 11 \times \frac{\pi}{180} \][/tex]
Using the value of [tex]\(\pi \approx 3.14159\)[/tex], we get:
[tex]\[ \theta \approx 11 \times 0.0174533 \approx 0.19198621771937624 \text{ radians} \][/tex]
### Step 2: Use the Arc Length Formula
The length of the arc [tex]\(s\)[/tex] is given by the formula:
[tex]\[ s = r \theta \][/tex]
where [tex]\(r\)[/tex] is the radius and [tex]\(\theta\)[/tex] is the angle in radians. Substituting the values we have:
[tex]\[ s = 2500 \times 0.19198621771937624 \approx 479.9655442984406 \text{ km} \][/tex]
### Step 3: Round to Two Significant Digits
Finally, we round the arc length to two significant digits:
[tex]\[ s \approx 479.97 \text{ km} \][/tex]
Thus, the approximate length of the arc is:
[tex]\[ s \approx 479.97 \text{ km} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.