Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Solve [tex]\(4|x+6|=20\)[/tex]

A. [tex]\(x=-11\)[/tex] and [tex]\(x=-1\)[/tex]
B. [tex]\(x=-11\)[/tex] and [tex]\(x=1\)[/tex]
C. [tex]\(x=11\)[/tex] and [tex]\(x=-11\)[/tex]
D. [tex]\(x=11\)[/tex] and [tex]\(x=-1\)[/tex]


Sagot :

To solve the equation [tex]\( 4|x+6| = 20 \)[/tex], let's follow these steps:

1. Isolate the absolute value term:
[tex]\[ 4|x+6| = 20 \][/tex]

2. Divide both sides by 4 to simplify:
[tex]\[ |x+6| = \frac{20}{4} \implies |x+6| = 5 \][/tex]

3. Solve the absolute value equation [tex]\( |x+6| = 5 \)[/tex] by considering the definition of absolute value:

This equation implies two cases:

Case 1: [tex]\( x + 6 = 5 \)[/tex]
[tex]\[ x + 6 = 5 \][/tex]
Subtract 6 from both sides:
[tex]\[ x = 5 - 6 \implies x = -1 \][/tex]

Case 2: [tex]\( x + 6 = -5 \)[/tex]
[tex]\[ x + 6 = -5 \][/tex]
Subtract 6 from both sides:
[tex]\[ x = -5 - 6 \implies x = -11 \][/tex]

Thus, the solutions to the equation [tex]\( 4|x+6| = 20 \)[/tex] are [tex]\( x = -1 \)[/tex] and [tex]\( x = -11 \)[/tex].

From the given options, the correct answer is:
[tex]\[ \boxed{\text{A. } x = -11 \text{ and } x = -1} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.