Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which of the following complex numbers has an absolute value (or modulus) of 5, we must first understand how to calculate the absolute value of a complex number. For a complex number [tex]\(a + bi\)[/tex], its absolute value is calculated as follows:
[tex]\[ |a + bi| = \sqrt{a^2 + b^2} \][/tex]
Let's evaluate each given complex number step-by-step.
1. For the complex number [tex]\(-3 + 4i\)[/tex]:
[tex]\[ | -3 + 4i | = \sqrt{(-3)^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \][/tex]
So, the absolute value of [tex]\(-3 + 4i\)[/tex] is 5.
2. For the complex number [tex]\(2 + 3i\)[/tex]:
[tex]\[ | 2 + 3i | = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.6 \][/tex]
The absolute value of [tex]\(2 + 3i\)[/tex] is approximately 3.6, which is not 5.
3. For the complex number [tex]\(7 - 2i\)[/tex]:
[tex]\[ | 7 - 2i | = \sqrt{7^2 + (-2)^2} = \sqrt{49 + 4} = \sqrt{53} \approx 7.28 \][/tex]
The absolute value of [tex]\(7 - 2i\)[/tex] is approximately 7.28, which is not 5.
4. For the complex number [tex]\(9 + 4i\)[/tex]:
[tex]\[ | 9 + 4i | = \sqrt{9^2 + 4^2} = \sqrt{81 + 16} = \sqrt{97} \approx 9.85 \][/tex]
The absolute value of [tex]\(9 + 4i\)[/tex] is approximately 9.85, which is not 5.
Given these calculations, the complex number [tex]\(-3 + 4i\)[/tex] has an absolute value of 5.
[tex]\[ |a + bi| = \sqrt{a^2 + b^2} \][/tex]
Let's evaluate each given complex number step-by-step.
1. For the complex number [tex]\(-3 + 4i\)[/tex]:
[tex]\[ | -3 + 4i | = \sqrt{(-3)^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \][/tex]
So, the absolute value of [tex]\(-3 + 4i\)[/tex] is 5.
2. For the complex number [tex]\(2 + 3i\)[/tex]:
[tex]\[ | 2 + 3i | = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.6 \][/tex]
The absolute value of [tex]\(2 + 3i\)[/tex] is approximately 3.6, which is not 5.
3. For the complex number [tex]\(7 - 2i\)[/tex]:
[tex]\[ | 7 - 2i | = \sqrt{7^2 + (-2)^2} = \sqrt{49 + 4} = \sqrt{53} \approx 7.28 \][/tex]
The absolute value of [tex]\(7 - 2i\)[/tex] is approximately 7.28, which is not 5.
4. For the complex number [tex]\(9 + 4i\)[/tex]:
[tex]\[ | 9 + 4i | = \sqrt{9^2 + 4^2} = \sqrt{81 + 16} = \sqrt{97} \approx 9.85 \][/tex]
The absolute value of [tex]\(9 + 4i\)[/tex] is approximately 9.85, which is not 5.
Given these calculations, the complex number [tex]\(-3 + 4i\)[/tex] has an absolute value of 5.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.