Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which of the following complex numbers has an absolute value (or modulus) of 5, we must first understand how to calculate the absolute value of a complex number. For a complex number [tex]\(a + bi\)[/tex], its absolute value is calculated as follows:
[tex]\[ |a + bi| = \sqrt{a^2 + b^2} \][/tex]
Let's evaluate each given complex number step-by-step.
1. For the complex number [tex]\(-3 + 4i\)[/tex]:
[tex]\[ | -3 + 4i | = \sqrt{(-3)^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \][/tex]
So, the absolute value of [tex]\(-3 + 4i\)[/tex] is 5.
2. For the complex number [tex]\(2 + 3i\)[/tex]:
[tex]\[ | 2 + 3i | = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.6 \][/tex]
The absolute value of [tex]\(2 + 3i\)[/tex] is approximately 3.6, which is not 5.
3. For the complex number [tex]\(7 - 2i\)[/tex]:
[tex]\[ | 7 - 2i | = \sqrt{7^2 + (-2)^2} = \sqrt{49 + 4} = \sqrt{53} \approx 7.28 \][/tex]
The absolute value of [tex]\(7 - 2i\)[/tex] is approximately 7.28, which is not 5.
4. For the complex number [tex]\(9 + 4i\)[/tex]:
[tex]\[ | 9 + 4i | = \sqrt{9^2 + 4^2} = \sqrt{81 + 16} = \sqrt{97} \approx 9.85 \][/tex]
The absolute value of [tex]\(9 + 4i\)[/tex] is approximately 9.85, which is not 5.
Given these calculations, the complex number [tex]\(-3 + 4i\)[/tex] has an absolute value of 5.
[tex]\[ |a + bi| = \sqrt{a^2 + b^2} \][/tex]
Let's evaluate each given complex number step-by-step.
1. For the complex number [tex]\(-3 + 4i\)[/tex]:
[tex]\[ | -3 + 4i | = \sqrt{(-3)^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \][/tex]
So, the absolute value of [tex]\(-3 + 4i\)[/tex] is 5.
2. For the complex number [tex]\(2 + 3i\)[/tex]:
[tex]\[ | 2 + 3i | = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.6 \][/tex]
The absolute value of [tex]\(2 + 3i\)[/tex] is approximately 3.6, which is not 5.
3. For the complex number [tex]\(7 - 2i\)[/tex]:
[tex]\[ | 7 - 2i | = \sqrt{7^2 + (-2)^2} = \sqrt{49 + 4} = \sqrt{53} \approx 7.28 \][/tex]
The absolute value of [tex]\(7 - 2i\)[/tex] is approximately 7.28, which is not 5.
4. For the complex number [tex]\(9 + 4i\)[/tex]:
[tex]\[ | 9 + 4i | = \sqrt{9^2 + 4^2} = \sqrt{81 + 16} = \sqrt{97} \approx 9.85 \][/tex]
The absolute value of [tex]\(9 + 4i\)[/tex] is approximately 9.85, which is not 5.
Given these calculations, the complex number [tex]\(-3 + 4i\)[/tex] has an absolute value of 5.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.