Answered

Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Which of the two functions below has the largest maximum [tex]\( y \)[/tex]-value?

[tex]\( f(x) = -x^4 - 2 \)[/tex]
[tex]\( g(x) = -3x^3 + 2 \)[/tex]

A. [tex]\( f(x) \)[/tex]
B. There is not enough information to determine
C. The extreme maximum [tex]\( y \)[/tex]-value for both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] is [tex]\(\infty\)[/tex]
D. [tex]\( g(x) \)[/tex]


Sagot :

To determine which of the two functions [tex]\( f(x) = -x^4 - 2 \)[/tex] and [tex]\( g(x) = -3x^3 + 2 \)[/tex] has the largest maximum [tex]\( y \)[/tex]-value, we need to find their critical points and evaluate the functions at those points.

### Finding Critical Points
First, we find the critical points by taking the derivative of each function and setting it equal to zero.

1. For [tex]\( f(x) = -x^4 - 2 \)[/tex]:

The derivative, [tex]\( f'(x) \)[/tex], is calculated as:
[tex]\[ f'(x) = \frac{d}{dx} (-x^4 - 2) = -4x^3 \][/tex]

Setting [tex]\( f'(x) = 0 \)[/tex]:
[tex]\[ -4x^3 = 0 \implies x = 0 \][/tex]

2. For [tex]\( g(x) = -3x^3 + 2 \)[/tex]:

The derivative, [tex]\( g'(x) \)[/tex], is calculated as:
[tex]\[ g'(x) = \frac{d}{dx} (-3x^3 + 2) = -9x^2 \][/tex]

Setting [tex]\( g'(x) = 0 \)[/tex]:
[tex]\[ -9x^2 = 0 \implies x = 0 \][/tex]

### Evaluating the Functions at the Critical Points
Next, evaluate each function at its critical point to determine the maximum [tex]\( y \)[/tex]-value.

1. For [tex]\( f(x) \)[/tex]:

Substitute [tex]\( x = 0 \)[/tex] into [tex]\( f(x) \)[/tex]:
[tex]\[ f(0) = -0^4 - 2 = -2 \][/tex]

So, the maximum [tex]\( y \)[/tex]-value for [tex]\( f(x) \)[/tex] is [tex]\( -2 \)[/tex].

2. For [tex]\( g(x) \)[/tex]:

Substitute [tex]\( x = 0 \)[/tex] into [tex]\( g(x) \)[/tex]:
[tex]\[ g(0) = -3(0)^3 + 2 = 2 \][/tex]

So, the maximum [tex]\( y \)[/tex]-value for [tex]\( g(x) \)[/tex] is [tex]\( 2 \)[/tex].

### Conclusion

Comparing the maximum [tex]\( y \)[/tex]-values of both functions:
- The maximum [tex]\( y \)[/tex]-value for [tex]\( f(x) \)[/tex] is [tex]\( -2 \)[/tex].
- The maximum [tex]\( y \)[/tex]-value for [tex]\( g(x) \)[/tex] is [tex]\( 2 \)[/tex].

Hence, the function [tex]\( g(x) \)[/tex] has the largest maximum [tex]\( y \)[/tex]-value.

Therefore, the answer is:
D. [tex]\( g(x) \)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.