Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the probability [tex]\( P(x \geq 92) \)[/tex] for a normal distribution with a mean [tex]\(\mu = 98\)[/tex] and a standard deviation [tex]\(\sigma = 6\)[/tex], follow these steps:
1. Calculate the z-score for [tex]\( x = 92 \)[/tex]:
The z-score formula is given by:
[tex]\[ z = \frac{x - \mu}{\sigma} \][/tex]
Substitute [tex]\( x = 92 \)[/tex], [tex]\( \mu = 98 \)[/tex], and [tex]\( \sigma = 6 \)[/tex] into the formula:
[tex]\[ z = \frac{92 - 98}{6} = \frac{-6}{6} = -1.0 \][/tex]
2. Find the cumulative probability for the calculated z-score:
The cumulative probability for a z-score can be obtained from standard normal distribution tables or using statistical software. For [tex]\( z = -1.0 \)[/tex], the cumulative probability [tex]\( P(Z < -1.0) \)[/tex] is approximately:
[tex]\[ P(Z < -1.0) \approx 0.1587 \][/tex]
This is the probability that a randomly selected value from this distribution is less than 92.
3. Determine the probability [tex]\( P(x \geq 92) \)[/tex]:
To find the probability that [tex]\( x \)[/tex] is greater than or equal to 92, use the complement rule:
[tex]\[ P(x \geq 92) = 1 - P(x < 92) \][/tex]
Substitute the cumulative probability found in the previous step:
[tex]\[ P(x \geq 92) = 1 - 0.1587 \approx 0.8413 \][/tex]
Therefore, the probability [tex]\( P(x \geq 92) \)[/tex] is approximately 0.8413.
Hence, the correct answer is:
C. 0.84
1. Calculate the z-score for [tex]\( x = 92 \)[/tex]:
The z-score formula is given by:
[tex]\[ z = \frac{x - \mu}{\sigma} \][/tex]
Substitute [tex]\( x = 92 \)[/tex], [tex]\( \mu = 98 \)[/tex], and [tex]\( \sigma = 6 \)[/tex] into the formula:
[tex]\[ z = \frac{92 - 98}{6} = \frac{-6}{6} = -1.0 \][/tex]
2. Find the cumulative probability for the calculated z-score:
The cumulative probability for a z-score can be obtained from standard normal distribution tables or using statistical software. For [tex]\( z = -1.0 \)[/tex], the cumulative probability [tex]\( P(Z < -1.0) \)[/tex] is approximately:
[tex]\[ P(Z < -1.0) \approx 0.1587 \][/tex]
This is the probability that a randomly selected value from this distribution is less than 92.
3. Determine the probability [tex]\( P(x \geq 92) \)[/tex]:
To find the probability that [tex]\( x \)[/tex] is greater than or equal to 92, use the complement rule:
[tex]\[ P(x \geq 92) = 1 - P(x < 92) \][/tex]
Substitute the cumulative probability found in the previous step:
[tex]\[ P(x \geq 92) = 1 - 0.1587 \approx 0.8413 \][/tex]
Therefore, the probability [tex]\( P(x \geq 92) \)[/tex] is approximately 0.8413.
Hence, the correct answer is:
C. 0.84
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.