Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which expression is equivalent to [tex]\(24^{\frac{1}{3}}\)[/tex], let's carefully work through the math step by step.
First, recall the property of exponents that allows us to rewrite numbers in terms of their prime factors. The number 24 can be factored as:
[tex]\[ 24 = 2^3 \times 3 \][/tex]
Next, let's take the cube root of 24. Using our prime factorization, we get:
[tex]\[ 24^{\frac{1}{3}} = (2^3 \times 3)^{\frac{1}{3}} \][/tex]
Now we apply the properties of exponents to separate the factors under the cube root:
[tex]\[ (2^3 \times 3)^{\frac{1}{3}} = 2^{3 \cdot \frac{1}{3}} \times 3^{\frac{1}{3}} \][/tex]
Since [tex]\( \frac{3}{3} = 1 \)[/tex], this simplifies to:
[tex]\[ 2^1 \times 3^{\frac{1}{3}} = 2 \times 3^{\frac{1}{3}} \][/tex]
Therefore, the expression [tex]\(24^{\frac{1}{3}}\)[/tex] is equivalent to:
[tex]\[ 2 \sqrt[3]{3} \][/tex]
So the correct answer is:
[tex]\[ 2 \sqrt[3]{3} \][/tex]
First, recall the property of exponents that allows us to rewrite numbers in terms of their prime factors. The number 24 can be factored as:
[tex]\[ 24 = 2^3 \times 3 \][/tex]
Next, let's take the cube root of 24. Using our prime factorization, we get:
[tex]\[ 24^{\frac{1}{3}} = (2^3 \times 3)^{\frac{1}{3}} \][/tex]
Now we apply the properties of exponents to separate the factors under the cube root:
[tex]\[ (2^3 \times 3)^{\frac{1}{3}} = 2^{3 \cdot \frac{1}{3}} \times 3^{\frac{1}{3}} \][/tex]
Since [tex]\( \frac{3}{3} = 1 \)[/tex], this simplifies to:
[tex]\[ 2^1 \times 3^{\frac{1}{3}} = 2 \times 3^{\frac{1}{3}} \][/tex]
Therefore, the expression [tex]\(24^{\frac{1}{3}}\)[/tex] is equivalent to:
[tex]\[ 2 \sqrt[3]{3} \][/tex]
So the correct answer is:
[tex]\[ 2 \sqrt[3]{3} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.