At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the end behavior of the graph of [tex]\( f(x) = x^3 (x+3) (-5x+1) \)[/tex] using limits, we'll analyze the behavior of [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\(-\infty\)[/tex] and [tex]\( +\infty \)[/tex].
1. Examining [tex]\( f(x) \)[/tex] as [tex]\( x \to -\infty \)[/tex]:
- At a large negative [tex]\( x \)[/tex], [tex]\( x \)[/tex] is a large negative number, [tex]\( x + 3 \)[/tex] is also large and negative, and [tex]\( -5x + 1 \)[/tex] becomes positive since [tex]\( -5 \times \text{negative\_large\_number} \)[/tex] will be positive.
- Therefore, multiplying these together [tex]\(( x^3 (x+3) (-5x+1) )\)[/tex], the product of two negative numbers (which is positive) and one positive number is positive. Since the term with the highest degree, [tex]\( x^5 \)[/tex], has a negative coefficient, the overall function will be highly negative.
Hence, as [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex].
2. Examining [tex]\( f(x) \)[/tex] as [tex]\( x \to +\infty \)[/tex]:
- At a large positive [tex]\( x \)[/tex], [tex]\( x \)[/tex] is a large positive number, [tex]\( x + 3 \)[/tex] is also a large positive number, and [tex]\( -5x + 1 \)[/tex] becomes negative since [tex]\( -5 \times \text{positive\_large\_number} \)[/tex] will be a large negative.
- Therefore, multiplying these together [tex]\(( x^3 (x+3) (-5x+1))\)[/tex], the product of three positive numbers (two in the significant domain of negative) and one negative number is negative.
- Similarly, since the term with the highest degree, [tex]\( x^5 \)[/tex], has a negative coefficient, the function will be highly negative.
Hence, as [tex]\( x \to +\infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex].
To summarize:
- As [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to +\infty \)[/tex].
- As [tex]\( x \to +\infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex].
So, the function exhibits the following end behavior:
[tex]\[ \text{As } x \rightarrow -\infty, f(x) \rightarrow -\infty \][/tex]
[tex]\[ \text{As } x \rightarrow +\infty, f(x) \rightarrow -\infty \][/tex]
[tex]\[ \text{As } x \rightarrow -\infty, f(x) \rightarrow +\infty \][/tex]
[tex]\[ \text{As } x \rightarrow +\infty, f(x) \rightarrow \infty \][/tex]
[tex]\[ \text{As } x \rightarrow -\infty, f(x) \rightarrow +\infty \][/tex]
[tex]\[ \text{As } x \rightarrow +\infty, f(x) \rightarrow \infty \][/tex]
1. Examining [tex]\( f(x) \)[/tex] as [tex]\( x \to -\infty \)[/tex]:
- At a large negative [tex]\( x \)[/tex], [tex]\( x \)[/tex] is a large negative number, [tex]\( x + 3 \)[/tex] is also large and negative, and [tex]\( -5x + 1 \)[/tex] becomes positive since [tex]\( -5 \times \text{negative\_large\_number} \)[/tex] will be positive.
- Therefore, multiplying these together [tex]\(( x^3 (x+3) (-5x+1) )\)[/tex], the product of two negative numbers (which is positive) and one positive number is positive. Since the term with the highest degree, [tex]\( x^5 \)[/tex], has a negative coefficient, the overall function will be highly negative.
Hence, as [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex].
2. Examining [tex]\( f(x) \)[/tex] as [tex]\( x \to +\infty \)[/tex]:
- At a large positive [tex]\( x \)[/tex], [tex]\( x \)[/tex] is a large positive number, [tex]\( x + 3 \)[/tex] is also a large positive number, and [tex]\( -5x + 1 \)[/tex] becomes negative since [tex]\( -5 \times \text{positive\_large\_number} \)[/tex] will be a large negative.
- Therefore, multiplying these together [tex]\(( x^3 (x+3) (-5x+1))\)[/tex], the product of three positive numbers (two in the significant domain of negative) and one negative number is negative.
- Similarly, since the term with the highest degree, [tex]\( x^5 \)[/tex], has a negative coefficient, the function will be highly negative.
Hence, as [tex]\( x \to +\infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex].
To summarize:
- As [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to +\infty \)[/tex].
- As [tex]\( x \to +\infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex].
So, the function exhibits the following end behavior:
[tex]\[ \text{As } x \rightarrow -\infty, f(x) \rightarrow -\infty \][/tex]
[tex]\[ \text{As } x \rightarrow +\infty, f(x) \rightarrow -\infty \][/tex]
[tex]\[ \text{As } x \rightarrow -\infty, f(x) \rightarrow +\infty \][/tex]
[tex]\[ \text{As } x \rightarrow +\infty, f(x) \rightarrow \infty \][/tex]
[tex]\[ \text{As } x \rightarrow -\infty, f(x) \rightarrow +\infty \][/tex]
[tex]\[ \text{As } x \rightarrow +\infty, f(x) \rightarrow \infty \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.