Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

The times of the runners in a marathon are normally distributed, with a mean of 3 hours and 50 minutes and a standard deviation of 30 minutes. What is the probability that a randomly selected runner has a time less than or equal to 3 hours and 20 minutes? Use the portion of the standard normal table below to help answer the question.

| [tex]$z$[/tex] | Probability |
|-------|-------------|
| 0.00 | 0.5000 |
| 0.50 | 0.6915 |
| 1.00 | 0.8413 |
| 2.00 | 0.9772 |
| 3.00 | 0.9987 |

A. 16%
B. 32%
C. 34%
D. 84%


Sagot :

To find the probability that a randomly selected runner has a time less than or equal to 3 hours and 20 minutes, let's go through the problem step-by-step:

1. Convert the mean and target times from hours and minutes to total minutes:
- Mean time: [tex]\(3\)[/tex] hours [tex]\(50\)[/tex] minutes
[tex]\[ 3 \text{ hours} \times 60 \text{ minutes/hour} + 50 \text{ minutes} = 230 \text{ minutes} \][/tex]
- Target time: [tex]\(3\)[/tex] hours [tex]\(20\)[/tex] minutes
[tex]\[ 3 \text{ hours} \times 60 \text{ minutes/hour} + 20 \text{ minutes} = 200 \text{ minutes} \][/tex]

2. Calculate the z-score for the target time:
The z-score formula is:
[tex]\[ z = \frac{\text{Target time} - \text{Mean time}}{\text{Standard Deviation}} \][/tex]
Substituting the given values:
[tex]\[ z = \frac{200 \text{ minutes} - 230 \text{ minutes}}{30 \text{ minutes}} = \frac{-30 \text{ minutes}}{30 \text{ minutes}} = -1.0 \][/tex]

3. Find the probability corresponding to the z-score:
Using the standard normal distribution table, we look up the probability for [tex]\(z = -1.0\)[/tex]. Since the standard normal table typically provides probabilities for positive z-values, we know that the symmetry of the normal distribution means:

For [tex]\( z = -1.0 \)[/tex], the probability is [tex]\(0.1587\)[/tex].

This means the probability that a randomly selected runner has a time less than or equal to 3 hours and 20 minutes is approximately [tex]\(15.87\%\)[/tex].

4. Select the correct choice:
Given the options: [tex]$16 \%$[/tex], [tex]$32 \%$[/tex], [tex]$34 \%$[/tex], [tex]$84 \%$[/tex], the closest to [tex]\(15.87\%\)[/tex] is:
[tex]\[ 16\% \][/tex]

Therefore, the probability that a randomly selected runner has a time less than or equal to 3 hours and 20 minutes is [tex]\(\boxed{16\%}\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.