Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the probability that a randomly selected runner has a time less than or equal to 3 hours and 20 minutes, let's go through the problem step-by-step:
1. Convert the mean and target times from hours and minutes to total minutes:
- Mean time: [tex]\(3\)[/tex] hours [tex]\(50\)[/tex] minutes
[tex]\[ 3 \text{ hours} \times 60 \text{ minutes/hour} + 50 \text{ minutes} = 230 \text{ minutes} \][/tex]
- Target time: [tex]\(3\)[/tex] hours [tex]\(20\)[/tex] minutes
[tex]\[ 3 \text{ hours} \times 60 \text{ minutes/hour} + 20 \text{ minutes} = 200 \text{ minutes} \][/tex]
2. Calculate the z-score for the target time:
The z-score formula is:
[tex]\[ z = \frac{\text{Target time} - \text{Mean time}}{\text{Standard Deviation}} \][/tex]
Substituting the given values:
[tex]\[ z = \frac{200 \text{ minutes} - 230 \text{ minutes}}{30 \text{ minutes}} = \frac{-30 \text{ minutes}}{30 \text{ minutes}} = -1.0 \][/tex]
3. Find the probability corresponding to the z-score:
Using the standard normal distribution table, we look up the probability for [tex]\(z = -1.0\)[/tex]. Since the standard normal table typically provides probabilities for positive z-values, we know that the symmetry of the normal distribution means:
For [tex]\( z = -1.0 \)[/tex], the probability is [tex]\(0.1587\)[/tex].
This means the probability that a randomly selected runner has a time less than or equal to 3 hours and 20 minutes is approximately [tex]\(15.87\%\)[/tex].
4. Select the correct choice:
Given the options: [tex]$16 \%$[/tex], [tex]$32 \%$[/tex], [tex]$34 \%$[/tex], [tex]$84 \%$[/tex], the closest to [tex]\(15.87\%\)[/tex] is:
[tex]\[ 16\% \][/tex]
Therefore, the probability that a randomly selected runner has a time less than or equal to 3 hours and 20 minutes is [tex]\(\boxed{16\%}\)[/tex].
1. Convert the mean and target times from hours and minutes to total minutes:
- Mean time: [tex]\(3\)[/tex] hours [tex]\(50\)[/tex] minutes
[tex]\[ 3 \text{ hours} \times 60 \text{ minutes/hour} + 50 \text{ minutes} = 230 \text{ minutes} \][/tex]
- Target time: [tex]\(3\)[/tex] hours [tex]\(20\)[/tex] minutes
[tex]\[ 3 \text{ hours} \times 60 \text{ minutes/hour} + 20 \text{ minutes} = 200 \text{ minutes} \][/tex]
2. Calculate the z-score for the target time:
The z-score formula is:
[tex]\[ z = \frac{\text{Target time} - \text{Mean time}}{\text{Standard Deviation}} \][/tex]
Substituting the given values:
[tex]\[ z = \frac{200 \text{ minutes} - 230 \text{ minutes}}{30 \text{ minutes}} = \frac{-30 \text{ minutes}}{30 \text{ minutes}} = -1.0 \][/tex]
3. Find the probability corresponding to the z-score:
Using the standard normal distribution table, we look up the probability for [tex]\(z = -1.0\)[/tex]. Since the standard normal table typically provides probabilities for positive z-values, we know that the symmetry of the normal distribution means:
For [tex]\( z = -1.0 \)[/tex], the probability is [tex]\(0.1587\)[/tex].
This means the probability that a randomly selected runner has a time less than or equal to 3 hours and 20 minutes is approximately [tex]\(15.87\%\)[/tex].
4. Select the correct choice:
Given the options: [tex]$16 \%$[/tex], [tex]$32 \%$[/tex], [tex]$34 \%$[/tex], [tex]$84 \%$[/tex], the closest to [tex]\(15.87\%\)[/tex] is:
[tex]\[ 16\% \][/tex]
Therefore, the probability that a randomly selected runner has a time less than or equal to 3 hours and 20 minutes is [tex]\(\boxed{16\%}\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.