Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which ordered pairs could lie on a line that is perpendicular to a line with a slope of [tex]\(-\frac{4}{5}\)[/tex], we need to find the slope of the perpendicular line. The slope of a line perpendicular to another is the negative reciprocal of the slope of the original line.
1. Find the slope of the perpendicular line:
- The slope of the original line is [tex]\(-\frac{4}{5}\)[/tex].
- The negative reciprocal of [tex]\(-\frac{4}{5}\)[/tex] is [tex]\(\frac{5}{4}\)[/tex].
Therefore, the slope of the perpendicular line is [tex]\(\frac{5}{4}\)[/tex].
2. Calculate the slopes for the given pairs and check if they match [tex]\(\frac{5}{4}\)[/tex]:
- For the ordered pairs [tex]\((-2,0)\)[/tex] and [tex]\((2,5)\)[/tex]:
[tex]\[ \text{slope} = \frac{5 - 0}{2 - (-2)} = \frac{5}{4} \][/tex]
This slope is [tex]\(\frac{5}{4}\)[/tex], so this pair satisfies the perpendicular condition.
- For the ordered pairs [tex]\((-4,5)\)[/tex] and [tex]\((4,-5)\)[/tex]:
[tex]\[ \text{slope} = \frac{-5 - 5}{4 - (-4)} = \frac{-10}{8} = -\frac{5}{4} \][/tex]
This slope is [tex]\(-\frac{5}{4}\)[/tex], which does not satisfy the perpendicular condition.
- For the ordered pairs [tex]\((-3,4)\)[/tex] and [tex]\((2,0)\)[/tex]:
[tex]\[ \text{slope} = \frac{0 - 4}{2 - (-3)} = \frac{-4}{5} \][/tex]
This slope is [tex]\(-\frac{4}{5}\)[/tex], which does not satisfy the perpendicular condition.
- For the ordered pairs [tex]\((1,-1)\)[/tex] and [tex]\((6,-5)\)[/tex]:
[tex]\[ \text{slope} = \frac{-5 - (-1)}{6 - 1} = \frac{-4}{5} \][/tex]
This slope is [tex]\(-\frac{4}{5}\)[/tex], which does not satisfy the perpendicular condition.
- For the ordered pairs [tex]\((2,-1)\)[/tex] and [tex]\((10,9)\)[/tex]:
[tex]\[ \text{slope} = \frac{9 - (-1)}{10 - 2} = \frac{10}{8} = \frac{5}{4} \][/tex]
This slope is [tex]\(\frac{5}{4}\)[/tex], so this pair satisfies the perpendicular condition.
3. Conclusion:
The ordered pairs that could lie on a line perpendicular to the one with a slope of [tex]\(-\frac{4}{5}\)[/tex] are:
[tex]\( \boxed{(-2,0) \text{ and } (2,5)} \)[/tex]
[tex]\( \boxed{(2,-1) \text{ and } (10,9)} \)[/tex]
1. Find the slope of the perpendicular line:
- The slope of the original line is [tex]\(-\frac{4}{5}\)[/tex].
- The negative reciprocal of [tex]\(-\frac{4}{5}\)[/tex] is [tex]\(\frac{5}{4}\)[/tex].
Therefore, the slope of the perpendicular line is [tex]\(\frac{5}{4}\)[/tex].
2. Calculate the slopes for the given pairs and check if they match [tex]\(\frac{5}{4}\)[/tex]:
- For the ordered pairs [tex]\((-2,0)\)[/tex] and [tex]\((2,5)\)[/tex]:
[tex]\[ \text{slope} = \frac{5 - 0}{2 - (-2)} = \frac{5}{4} \][/tex]
This slope is [tex]\(\frac{5}{4}\)[/tex], so this pair satisfies the perpendicular condition.
- For the ordered pairs [tex]\((-4,5)\)[/tex] and [tex]\((4,-5)\)[/tex]:
[tex]\[ \text{slope} = \frac{-5 - 5}{4 - (-4)} = \frac{-10}{8} = -\frac{5}{4} \][/tex]
This slope is [tex]\(-\frac{5}{4}\)[/tex], which does not satisfy the perpendicular condition.
- For the ordered pairs [tex]\((-3,4)\)[/tex] and [tex]\((2,0)\)[/tex]:
[tex]\[ \text{slope} = \frac{0 - 4}{2 - (-3)} = \frac{-4}{5} \][/tex]
This slope is [tex]\(-\frac{4}{5}\)[/tex], which does not satisfy the perpendicular condition.
- For the ordered pairs [tex]\((1,-1)\)[/tex] and [tex]\((6,-5)\)[/tex]:
[tex]\[ \text{slope} = \frac{-5 - (-1)}{6 - 1} = \frac{-4}{5} \][/tex]
This slope is [tex]\(-\frac{4}{5}\)[/tex], which does not satisfy the perpendicular condition.
- For the ordered pairs [tex]\((2,-1)\)[/tex] and [tex]\((10,9)\)[/tex]:
[tex]\[ \text{slope} = \frac{9 - (-1)}{10 - 2} = \frac{10}{8} = \frac{5}{4} \][/tex]
This slope is [tex]\(\frac{5}{4}\)[/tex], so this pair satisfies the perpendicular condition.
3. Conclusion:
The ordered pairs that could lie on a line perpendicular to the one with a slope of [tex]\(-\frac{4}{5}\)[/tex] are:
[tex]\( \boxed{(-2,0) \text{ and } (2,5)} \)[/tex]
[tex]\( \boxed{(2,-1) \text{ and } (10,9)} \)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.