Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which ordered pairs could lie on a line that is perpendicular to a line with a slope of [tex]\(-\frac{4}{5}\)[/tex], we need to find the slope of the perpendicular line. The slope of a line perpendicular to another is the negative reciprocal of the slope of the original line.
1. Find the slope of the perpendicular line:
- The slope of the original line is [tex]\(-\frac{4}{5}\)[/tex].
- The negative reciprocal of [tex]\(-\frac{4}{5}\)[/tex] is [tex]\(\frac{5}{4}\)[/tex].
Therefore, the slope of the perpendicular line is [tex]\(\frac{5}{4}\)[/tex].
2. Calculate the slopes for the given pairs and check if they match [tex]\(\frac{5}{4}\)[/tex]:
- For the ordered pairs [tex]\((-2,0)\)[/tex] and [tex]\((2,5)\)[/tex]:
[tex]\[ \text{slope} = \frac{5 - 0}{2 - (-2)} = \frac{5}{4} \][/tex]
This slope is [tex]\(\frac{5}{4}\)[/tex], so this pair satisfies the perpendicular condition.
- For the ordered pairs [tex]\((-4,5)\)[/tex] and [tex]\((4,-5)\)[/tex]:
[tex]\[ \text{slope} = \frac{-5 - 5}{4 - (-4)} = \frac{-10}{8} = -\frac{5}{4} \][/tex]
This slope is [tex]\(-\frac{5}{4}\)[/tex], which does not satisfy the perpendicular condition.
- For the ordered pairs [tex]\((-3,4)\)[/tex] and [tex]\((2,0)\)[/tex]:
[tex]\[ \text{slope} = \frac{0 - 4}{2 - (-3)} = \frac{-4}{5} \][/tex]
This slope is [tex]\(-\frac{4}{5}\)[/tex], which does not satisfy the perpendicular condition.
- For the ordered pairs [tex]\((1,-1)\)[/tex] and [tex]\((6,-5)\)[/tex]:
[tex]\[ \text{slope} = \frac{-5 - (-1)}{6 - 1} = \frac{-4}{5} \][/tex]
This slope is [tex]\(-\frac{4}{5}\)[/tex], which does not satisfy the perpendicular condition.
- For the ordered pairs [tex]\((2,-1)\)[/tex] and [tex]\((10,9)\)[/tex]:
[tex]\[ \text{slope} = \frac{9 - (-1)}{10 - 2} = \frac{10}{8} = \frac{5}{4} \][/tex]
This slope is [tex]\(\frac{5}{4}\)[/tex], so this pair satisfies the perpendicular condition.
3. Conclusion:
The ordered pairs that could lie on a line perpendicular to the one with a slope of [tex]\(-\frac{4}{5}\)[/tex] are:
[tex]\( \boxed{(-2,0) \text{ and } (2,5)} \)[/tex]
[tex]\( \boxed{(2,-1) \text{ and } (10,9)} \)[/tex]
1. Find the slope of the perpendicular line:
- The slope of the original line is [tex]\(-\frac{4}{5}\)[/tex].
- The negative reciprocal of [tex]\(-\frac{4}{5}\)[/tex] is [tex]\(\frac{5}{4}\)[/tex].
Therefore, the slope of the perpendicular line is [tex]\(\frac{5}{4}\)[/tex].
2. Calculate the slopes for the given pairs and check if they match [tex]\(\frac{5}{4}\)[/tex]:
- For the ordered pairs [tex]\((-2,0)\)[/tex] and [tex]\((2,5)\)[/tex]:
[tex]\[ \text{slope} = \frac{5 - 0}{2 - (-2)} = \frac{5}{4} \][/tex]
This slope is [tex]\(\frac{5}{4}\)[/tex], so this pair satisfies the perpendicular condition.
- For the ordered pairs [tex]\((-4,5)\)[/tex] and [tex]\((4,-5)\)[/tex]:
[tex]\[ \text{slope} = \frac{-5 - 5}{4 - (-4)} = \frac{-10}{8} = -\frac{5}{4} \][/tex]
This slope is [tex]\(-\frac{5}{4}\)[/tex], which does not satisfy the perpendicular condition.
- For the ordered pairs [tex]\((-3,4)\)[/tex] and [tex]\((2,0)\)[/tex]:
[tex]\[ \text{slope} = \frac{0 - 4}{2 - (-3)} = \frac{-4}{5} \][/tex]
This slope is [tex]\(-\frac{4}{5}\)[/tex], which does not satisfy the perpendicular condition.
- For the ordered pairs [tex]\((1,-1)\)[/tex] and [tex]\((6,-5)\)[/tex]:
[tex]\[ \text{slope} = \frac{-5 - (-1)}{6 - 1} = \frac{-4}{5} \][/tex]
This slope is [tex]\(-\frac{4}{5}\)[/tex], which does not satisfy the perpendicular condition.
- For the ordered pairs [tex]\((2,-1)\)[/tex] and [tex]\((10,9)\)[/tex]:
[tex]\[ \text{slope} = \frac{9 - (-1)}{10 - 2} = \frac{10}{8} = \frac{5}{4} \][/tex]
This slope is [tex]\(\frac{5}{4}\)[/tex], so this pair satisfies the perpendicular condition.
3. Conclusion:
The ordered pairs that could lie on a line perpendicular to the one with a slope of [tex]\(-\frac{4}{5}\)[/tex] are:
[tex]\( \boxed{(-2,0) \text{ and } (2,5)} \)[/tex]
[tex]\( \boxed{(2,-1) \text{ and } (10,9)} \)[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.