Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the nature of the completely simplified difference between the polynomials [tex]\( P_1 = a^3 b + 9 a^2 b^2 - 4 a b^5 \)[/tex] and [tex]\( P_2 = a^3 b - 3 a^2 b^2 + a b^5 \)[/tex], follow these steps:
1. Express the polynomials:
- [tex]\( P_1 = a^3 b + 9 a^2 b^2 - 4 a b^5 \)[/tex]
- [tex]\( P_2 = a^3 b - 3 a^2 b^2 + a b^5 \)[/tex]
2. Calculate the difference [tex]\( P_1 - P_2 \)[/tex]:
[tex]\[ P_{\text{diff}} = (a^3 b + 9 a^2 b^2 - 4 a b^5) - (a^3 b - 3 a^2 b^2 + a b^5) \][/tex]
3. Distribute the negative sign in [tex]\( P_2 \)[/tex]:
[tex]\[ P_{\text{diff}} = a^3 b + 9 a^2 b^2 - 4 a b^5 - a^3 b + 3 a^2 b^2 - a b^5 \][/tex]
4. Combine like terms:
[tex]\[ P_{\text{diff}} = (a^3 b - a^3 b) + (9 a^2 b^2 + 3 a^2 b^2) + (-4 a b^5 - a b^5) \][/tex]
Simplify each group:
[tex]\[ P_{\text{diff}} = 0 a^3 b + 12 a^2 b^2 - 5 a b^5 \][/tex]
Therefore:
[tex]\[ P_{\text{diff}} = 12 a^2 b^2 - 5 a b^5 \][/tex]
5. Identify the type class of the simplified difference:
- The result [tex]\( 12 a^2 b^2 - 5 a b^5 \)[/tex] is a binomial (since it has two terms).
- The degree of a term in a polynomial is the sum of the exponents of the variables in that term.
- For [tex]\( 12 a^2 b^2 \)[/tex], the degree is [tex]\( 2 + 2 = 4 \)[/tex].
- For [tex]\( -5 a b^5 \)[/tex], the degree is [tex]\( 1 + 5 = 6 \)[/tex].
- The degree of the polynomial is the highest degree among its terms, which is 6 in this case.
Hence, the completely simplified difference of the polynomials is a binomial with a degree of 6.
Answer:
The difference is a binomial with a degree of 6.
1. Express the polynomials:
- [tex]\( P_1 = a^3 b + 9 a^2 b^2 - 4 a b^5 \)[/tex]
- [tex]\( P_2 = a^3 b - 3 a^2 b^2 + a b^5 \)[/tex]
2. Calculate the difference [tex]\( P_1 - P_2 \)[/tex]:
[tex]\[ P_{\text{diff}} = (a^3 b + 9 a^2 b^2 - 4 a b^5) - (a^3 b - 3 a^2 b^2 + a b^5) \][/tex]
3. Distribute the negative sign in [tex]\( P_2 \)[/tex]:
[tex]\[ P_{\text{diff}} = a^3 b + 9 a^2 b^2 - 4 a b^5 - a^3 b + 3 a^2 b^2 - a b^5 \][/tex]
4. Combine like terms:
[tex]\[ P_{\text{diff}} = (a^3 b - a^3 b) + (9 a^2 b^2 + 3 a^2 b^2) + (-4 a b^5 - a b^5) \][/tex]
Simplify each group:
[tex]\[ P_{\text{diff}} = 0 a^3 b + 12 a^2 b^2 - 5 a b^5 \][/tex]
Therefore:
[tex]\[ P_{\text{diff}} = 12 a^2 b^2 - 5 a b^5 \][/tex]
5. Identify the type class of the simplified difference:
- The result [tex]\( 12 a^2 b^2 - 5 a b^5 \)[/tex] is a binomial (since it has two terms).
- The degree of a term in a polynomial is the sum of the exponents of the variables in that term.
- For [tex]\( 12 a^2 b^2 \)[/tex], the degree is [tex]\( 2 + 2 = 4 \)[/tex].
- For [tex]\( -5 a b^5 \)[/tex], the degree is [tex]\( 1 + 5 = 6 \)[/tex].
- The degree of the polynomial is the highest degree among its terms, which is 6 in this case.
Hence, the completely simplified difference of the polynomials is a binomial with a degree of 6.
Answer:
The difference is a binomial with a degree of 6.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.