Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the most restrictive level of significance that indicates the company is packaging an average amount of iced tea beverages less than the required average of [tex]\(300 \, \text{mL}\)[/tex], we need to perform a hypothesis test.
Here’s a step-by-step solution:
### Step 1: Formulate the Hypotheses
- Null Hypothesis ([tex]\(H_0\)[/tex]): The true mean volume is [tex]\(300 \, \text{mL}\)[/tex], i.e., [tex]\( \mu = 300 \, \text{mL}\)[/tex].
- Alternative Hypothesis ([tex]\(H_1\)[/tex]): The true mean volume is less than [tex]\(300 \, \text{mL}\)[/tex], i.e., [tex]\( \mu < 300 \, \text{mL}\)[/tex].
### Step 2: Calculate the Standard Error
The standard error of the mean (SE) is computed using the population standard deviation ([tex]\(\sigma\)[/tex]) and the sample size ([tex]\(n\)[/tex]):
[tex]\[ \text{SE} = \frac{\sigma}{\sqrt{n}} \][/tex]
Given:
- Population standard deviation ([tex]\(\sigma\)[/tex]) = [tex]\(3 \, \text{mL}\)[/tex]
- Sample size ([tex]\(n\)[/tex]) = 20
Plugging in these values:
[tex]\[ \text{SE} = \frac{3}{\sqrt{20}} \approx 0.6708 \][/tex]
### Step 3: Calculate the Test Statistic (Z-score)
The Z-score is calculated with the formula:
[tex]\[ Z = \frac{\bar{X} - \mu}{\text{SE}} \][/tex]
Where:
- [tex]\(\bar{X}\)[/tex] is the sample mean = [tex]\(298.4 \, \text{mL}\)[/tex]
- [tex]\(\mu\)[/tex] is the population mean = [tex]\(300 \, \text{mL}\)[/tex]
Plugging in the values:
[tex]\[ Z = \frac{298.4 - 300}{0.6708} \approx -2.385 \][/tex]
### Step 4: Compare the Test Statistic to Critical Z-values
We compare the calculated Z-score to the critical Z-values from the table for different levels of significance.
Given critical Z-values for the upper tail:
- [tex]\(5\%\)[/tex] significance level: [tex]\(Z = 1.65\)[/tex]
- [tex]\(2.5\%\)[/tex] significance level: [tex]\(Z = 1.96\)[/tex]
- [tex]\(1\%\)[/tex] significance level: [tex]\(Z = 2.58\)[/tex]
Since our test is one-tailed (left-tailed), we compare the negative of these critical values with our calculated Z-score:
Critical Z-values (left-tailed):
- [tex]\(5\%\)[/tex]: [tex]\(-1.65\)[/tex]
- [tex]\(2.5\%\)[/tex]: [tex]\(-1.96\)[/tex]
- [tex]\(1\%\)[/tex]: [tex]\(-2.58\)[/tex]
The test statistic [tex]\(Z \approx -2.385\)[/tex] is less than [tex]\(-1.96\)[/tex] but greater than [tex]\(-2.58\)[/tex].
### Conclusion:
The most restrictive level of significance at which we can reject the null hypothesis and conclude that the company is packaging less than the required average [tex]\(300 \, \text{mL}\)[/tex] is [tex]\(2.5\%\)[/tex].
Therefore, the answer is [tex]\( \boxed{2.5\%} \)[/tex].
Here’s a step-by-step solution:
### Step 1: Formulate the Hypotheses
- Null Hypothesis ([tex]\(H_0\)[/tex]): The true mean volume is [tex]\(300 \, \text{mL}\)[/tex], i.e., [tex]\( \mu = 300 \, \text{mL}\)[/tex].
- Alternative Hypothesis ([tex]\(H_1\)[/tex]): The true mean volume is less than [tex]\(300 \, \text{mL}\)[/tex], i.e., [tex]\( \mu < 300 \, \text{mL}\)[/tex].
### Step 2: Calculate the Standard Error
The standard error of the mean (SE) is computed using the population standard deviation ([tex]\(\sigma\)[/tex]) and the sample size ([tex]\(n\)[/tex]):
[tex]\[ \text{SE} = \frac{\sigma}{\sqrt{n}} \][/tex]
Given:
- Population standard deviation ([tex]\(\sigma\)[/tex]) = [tex]\(3 \, \text{mL}\)[/tex]
- Sample size ([tex]\(n\)[/tex]) = 20
Plugging in these values:
[tex]\[ \text{SE} = \frac{3}{\sqrt{20}} \approx 0.6708 \][/tex]
### Step 3: Calculate the Test Statistic (Z-score)
The Z-score is calculated with the formula:
[tex]\[ Z = \frac{\bar{X} - \mu}{\text{SE}} \][/tex]
Where:
- [tex]\(\bar{X}\)[/tex] is the sample mean = [tex]\(298.4 \, \text{mL}\)[/tex]
- [tex]\(\mu\)[/tex] is the population mean = [tex]\(300 \, \text{mL}\)[/tex]
Plugging in the values:
[tex]\[ Z = \frac{298.4 - 300}{0.6708} \approx -2.385 \][/tex]
### Step 4: Compare the Test Statistic to Critical Z-values
We compare the calculated Z-score to the critical Z-values from the table for different levels of significance.
Given critical Z-values for the upper tail:
- [tex]\(5\%\)[/tex] significance level: [tex]\(Z = 1.65\)[/tex]
- [tex]\(2.5\%\)[/tex] significance level: [tex]\(Z = 1.96\)[/tex]
- [tex]\(1\%\)[/tex] significance level: [tex]\(Z = 2.58\)[/tex]
Since our test is one-tailed (left-tailed), we compare the negative of these critical values with our calculated Z-score:
Critical Z-values (left-tailed):
- [tex]\(5\%\)[/tex]: [tex]\(-1.65\)[/tex]
- [tex]\(2.5\%\)[/tex]: [tex]\(-1.96\)[/tex]
- [tex]\(1\%\)[/tex]: [tex]\(-2.58\)[/tex]
The test statistic [tex]\(Z \approx -2.385\)[/tex] is less than [tex]\(-1.96\)[/tex] but greater than [tex]\(-2.58\)[/tex].
### Conclusion:
The most restrictive level of significance at which we can reject the null hypothesis and conclude that the company is packaging less than the required average [tex]\(300 \, \text{mL}\)[/tex] is [tex]\(2.5\%\)[/tex].
Therefore, the answer is [tex]\( \boxed{2.5\%} \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.