Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine how long it will take for 27 grams of Plutonium-240 to decay to 9 grams, we can use the exponential decay formula [tex]\( Q(t) = Q_0 e^{-kt} \)[/tex], where:
- [tex]\( Q_0 \)[/tex] is the initial amount of Plutonium-240, which is 27 grams.
- [tex]\( Q(t) \)[/tex] is the amount remaining after time [tex]\( t \)[/tex], which is 9 grams.
- [tex]\( k \)[/tex] is the decay constant, given as 0.00011.
We need to solve for [tex]\( t \)[/tex] in the equation. Starting with [tex]\( Q(t) = Q_0 e^{-kt} \)[/tex], we can substitute the known values:
[tex]\[ 9 = 27 e^{-0.00011 t} \][/tex]
To isolate the exponent, we first divide both sides by 27:
[tex]\[ \frac{9}{27} = e^{-0.00011 t} \][/tex]
[tex]\[ \frac{1}{3} = e^{-0.00011 t} \][/tex]
Next, take the natural logarithm of both sides to get rid of the exponential:
[tex]\[ \ln\left(\frac{1}{3}\right) = \ln\left(e^{-0.00011 t}\right) \][/tex]
Using the property of logarithms that [tex]\(\ln(e^x) = x\)[/tex], we get:
[tex]\[ \ln\left(\frac{1}{3}\right) = -0.00011 t \][/tex]
Now solve for [tex]\( t \)[/tex] by dividing both sides by -0.00011:
[tex]\[ t = \frac{\ln\left(\frac{1}{3}\right)}{-0.00011} \][/tex]
Calculate [tex]\(\ln\left(\frac{1}{3}\right)\)[/tex]:
[tex]\[ \ln\left(\frac{1}{3}\right) = \ln(1) - \ln(3) = 0 - \ln(3) = -\ln(3) \][/tex]
Since [tex]\(\ln(3) \approx 1.0986\)[/tex]:
[tex]\[ \ln\left(\frac{1}{3}\right) = -1.0986 \][/tex]
Now we can substitute this back into the equation for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{-1.0986}{-0.00011} = \frac{1.0986}{0.00011} \approx 9987.3844 \][/tex]
Thus, the time [tex]\( t \)[/tex] is approximately 9987.3844 years. Rounding this to the nearest 10 years, we get:
[tex]\[ t \approx 9990 \text{ years} \][/tex]
Therefore, the amount of time it takes for 27 grams of Plutonium-240 to decay to 9 grams, to the nearest 10 years, is:
A. 9,990 years.
- [tex]\( Q_0 \)[/tex] is the initial amount of Plutonium-240, which is 27 grams.
- [tex]\( Q(t) \)[/tex] is the amount remaining after time [tex]\( t \)[/tex], which is 9 grams.
- [tex]\( k \)[/tex] is the decay constant, given as 0.00011.
We need to solve for [tex]\( t \)[/tex] in the equation. Starting with [tex]\( Q(t) = Q_0 e^{-kt} \)[/tex], we can substitute the known values:
[tex]\[ 9 = 27 e^{-0.00011 t} \][/tex]
To isolate the exponent, we first divide both sides by 27:
[tex]\[ \frac{9}{27} = e^{-0.00011 t} \][/tex]
[tex]\[ \frac{1}{3} = e^{-0.00011 t} \][/tex]
Next, take the natural logarithm of both sides to get rid of the exponential:
[tex]\[ \ln\left(\frac{1}{3}\right) = \ln\left(e^{-0.00011 t}\right) \][/tex]
Using the property of logarithms that [tex]\(\ln(e^x) = x\)[/tex], we get:
[tex]\[ \ln\left(\frac{1}{3}\right) = -0.00011 t \][/tex]
Now solve for [tex]\( t \)[/tex] by dividing both sides by -0.00011:
[tex]\[ t = \frac{\ln\left(\frac{1}{3}\right)}{-0.00011} \][/tex]
Calculate [tex]\(\ln\left(\frac{1}{3}\right)\)[/tex]:
[tex]\[ \ln\left(\frac{1}{3}\right) = \ln(1) - \ln(3) = 0 - \ln(3) = -\ln(3) \][/tex]
Since [tex]\(\ln(3) \approx 1.0986\)[/tex]:
[tex]\[ \ln\left(\frac{1}{3}\right) = -1.0986 \][/tex]
Now we can substitute this back into the equation for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{-1.0986}{-0.00011} = \frac{1.0986}{0.00011} \approx 9987.3844 \][/tex]
Thus, the time [tex]\( t \)[/tex] is approximately 9987.3844 years. Rounding this to the nearest 10 years, we get:
[tex]\[ t \approx 9990 \text{ years} \][/tex]
Therefore, the amount of time it takes for 27 grams of Plutonium-240 to decay to 9 grams, to the nearest 10 years, is:
A. 9,990 years.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.