Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the angle of incline that the ramp forms with the ground, we can use trigonometric functions. Let's follow a step-by-step solution:
1. Identify the given data:
- The length of the ramp (hypotenuse) is 21.0 meters.
- The height of the ramp (opposite side) is 7.0 meters.
2. Apply the trigonometric function to find the angle:
- Use the tangent function, which relates the opposite side and the adjacent side of a right triangle. In this case, the adjacent side can be interpreted as the horizontal distance along the ground that the ramp spans.
- The tangent of the angle ([tex]\(\theta\)[/tex]) is given by:
[tex]\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
3. Calculate the angle:
- To find the angle [tex]\(\theta\)[/tex], we can use the inverse tangent (arctangent) function:
[tex]\[ \theta = \arctan\left(\frac{\text{opposite}}{\text{adjacent}}\right) \][/tex]
- Here, the opposite side is 7.0 meters and the adjacent side is 21.0 meters.
[tex]\[ \theta = \arctan\left(\frac{7.0}{21.0}\right) \][/tex]
4. Convert the angle from radians to degrees for better understanding:
- The angle in radians is approximately 0.32175 radians.
- Converting radians to degrees using the conversion factor [tex]\(180/\pi\)[/tex]:
[tex]\[ \theta \approx 18.4349 \text{ degrees} \][/tex]
5. Round the angle to the nearest degree:
- When rounded to the nearest degree, [tex]\(\theta\)[/tex] is approximately [tex]\(18\)[/tex] degrees.
Therefore, the angle of incline that the ramp forms with the ground is approximately [tex]\(18\)[/tex] degrees.
1. Identify the given data:
- The length of the ramp (hypotenuse) is 21.0 meters.
- The height of the ramp (opposite side) is 7.0 meters.
2. Apply the trigonometric function to find the angle:
- Use the tangent function, which relates the opposite side and the adjacent side of a right triangle. In this case, the adjacent side can be interpreted as the horizontal distance along the ground that the ramp spans.
- The tangent of the angle ([tex]\(\theta\)[/tex]) is given by:
[tex]\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
3. Calculate the angle:
- To find the angle [tex]\(\theta\)[/tex], we can use the inverse tangent (arctangent) function:
[tex]\[ \theta = \arctan\left(\frac{\text{opposite}}{\text{adjacent}}\right) \][/tex]
- Here, the opposite side is 7.0 meters and the adjacent side is 21.0 meters.
[tex]\[ \theta = \arctan\left(\frac{7.0}{21.0}\right) \][/tex]
4. Convert the angle from radians to degrees for better understanding:
- The angle in radians is approximately 0.32175 radians.
- Converting radians to degrees using the conversion factor [tex]\(180/\pi\)[/tex]:
[tex]\[ \theta \approx 18.4349 \text{ degrees} \][/tex]
5. Round the angle to the nearest degree:
- When rounded to the nearest degree, [tex]\(\theta\)[/tex] is approximately [tex]\(18\)[/tex] degrees.
Therefore, the angle of incline that the ramp forms with the ground is approximately [tex]\(18\)[/tex] degrees.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.