Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's solve this problem step by step using trigonometry.
1. Understanding the Problem:
- We have a lighthouse and a sailboat.
- The angle of depression from the lighthouse operator to the sailboat is 16 degrees.
- The horizontal distance (distance along the base) from the base of the lighthouse to the sailboat is 120 feet.
2. Visual Representation:
- Imagine a right triangle where:
- The distance along the base to the sailboat is the adjacent side (120 feet).
- The distance from the lighthouse operator to the sailboat is the hypotenuse (which we need to find).
- The lighthouse and the line of sight to the sailboat form the right angle.
3. Using Trigonometry:
- In a right triangle, the cosine of an angle is defined as the adjacent side divided by the hypotenuse.
- Mathematically, this is:
[tex]\[ \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} \][/tex]
- Here, [tex]\(\theta\)[/tex] is the angle of depression, which is 16 degrees.
- The adjacent side is 120 feet.
- Let [tex]\(d\)[/tex] be the distance from the lighthouse operator to the sailboat (the hypotenuse).
4. Set Up the Equation:
[tex]\[ \cos(16^\circ) = \frac{120}{d} \][/tex]
5. Solve for [tex]\(d\)[/tex]:
[tex]\[ d = \frac{120}{\cos(16^\circ)} \][/tex]
6. Calculate:
- From trigonometric tables or a calculator, we know [tex]\(\cos(16^\circ) \approx 0.9613\)[/tex].
- Substitute this value:
[tex]\[ d = \frac{120}{0.9613} \approx 124.8 \][/tex]
7. Conclusion:
- Thus, the distance from the lighthouse operator to the sailboat is approximately 124.8 feet.
So, the lighthouse operator is about 124.8 feet from the sailboat.
1. Understanding the Problem:
- We have a lighthouse and a sailboat.
- The angle of depression from the lighthouse operator to the sailboat is 16 degrees.
- The horizontal distance (distance along the base) from the base of the lighthouse to the sailboat is 120 feet.
2. Visual Representation:
- Imagine a right triangle where:
- The distance along the base to the sailboat is the adjacent side (120 feet).
- The distance from the lighthouse operator to the sailboat is the hypotenuse (which we need to find).
- The lighthouse and the line of sight to the sailboat form the right angle.
3. Using Trigonometry:
- In a right triangle, the cosine of an angle is defined as the adjacent side divided by the hypotenuse.
- Mathematically, this is:
[tex]\[ \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} \][/tex]
- Here, [tex]\(\theta\)[/tex] is the angle of depression, which is 16 degrees.
- The adjacent side is 120 feet.
- Let [tex]\(d\)[/tex] be the distance from the lighthouse operator to the sailboat (the hypotenuse).
4. Set Up the Equation:
[tex]\[ \cos(16^\circ) = \frac{120}{d} \][/tex]
5. Solve for [tex]\(d\)[/tex]:
[tex]\[ d = \frac{120}{\cos(16^\circ)} \][/tex]
6. Calculate:
- From trigonometric tables or a calculator, we know [tex]\(\cos(16^\circ) \approx 0.9613\)[/tex].
- Substitute this value:
[tex]\[ d = \frac{120}{0.9613} \approx 124.8 \][/tex]
7. Conclusion:
- Thus, the distance from the lighthouse operator to the sailboat is approximately 124.8 feet.
So, the lighthouse operator is about 124.8 feet from the sailboat.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.