Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's solve the equation:
[tex]\[ x^2 + 4x = 3 \][/tex]
We will go through the steps to solve this quadratic equation.
### Step 1: Rewrite the equation in standard quadratic form
First, let's get all terms to one side of the equation to write it in the standard quadratic form [tex]\(ax^2 + bx + c = 0\)[/tex].
[tex]\[ x^2 + 4x - 3 = 0 \][/tex]
### Step 2: Identify the coefficients
In our quadratic equation [tex]\(x^2 + 4x - 3 = 0\)[/tex], the coefficients are:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 4\)[/tex]
- [tex]\(c = -3\)[/tex]
### Step 3: Use the quadratic formula
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
### Step 4: Plug in the coefficients into the quadratic formula
Let's substitute [tex]\(a = 1\)[/tex], [tex]\(b = 4\)[/tex], and [tex]\(c = -3\)[/tex] into the quadratic formula.
[tex]\[ x = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot (-3)}}{2 \cdot 1} \][/tex]
### Step 5: Simplify under the square root
Calculate the discriminant (inside the square root):
[tex]\[ 4^2 - 4 \cdot 1 \cdot (-3) = 16 + 12 = 28 \][/tex]
So the expression becomes:
[tex]\[ x = \frac{-4 \pm \sqrt{28}}{2} \][/tex]
### Step 6: Simplify the square root of 28
We can simplify [tex]\(\sqrt{28}\)[/tex]:
[tex]\[ \sqrt{28} = \sqrt{4 \cdot 7} = 2\sqrt{7} \][/tex]
### Step 7: Substitute back the simplified square root
Now our expression is:
[tex]\[ x = \frac{-4 \pm 2\sqrt{7}}{2} \][/tex]
### Step 8: Simplify the fraction
Separate the terms in the numerator to simplify:
[tex]\[ x = \frac{-4}{2} \pm \frac{2\sqrt{7}}{2} \][/tex]
[tex]\[ x = -2 \pm \sqrt{7} \][/tex]
### Step 9: Write the solutions
We have two solutions:
[tex]\[ x_1 = -2 + \sqrt{7} \][/tex]
[tex]\[ x_2 = -2 - \sqrt{7} \][/tex]
So, the solutions to the equation [tex]\(x^2 + 4x = 3\)[/tex] are:
[tex]\[ x = -2 + \sqrt{7} \][/tex]
[tex]\[ x = -2 - \sqrt{7} \][/tex]
These are the solutions for the given quadratic equation.
[tex]\[ x^2 + 4x = 3 \][/tex]
We will go through the steps to solve this quadratic equation.
### Step 1: Rewrite the equation in standard quadratic form
First, let's get all terms to one side of the equation to write it in the standard quadratic form [tex]\(ax^2 + bx + c = 0\)[/tex].
[tex]\[ x^2 + 4x - 3 = 0 \][/tex]
### Step 2: Identify the coefficients
In our quadratic equation [tex]\(x^2 + 4x - 3 = 0\)[/tex], the coefficients are:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = 4\)[/tex]
- [tex]\(c = -3\)[/tex]
### Step 3: Use the quadratic formula
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
### Step 4: Plug in the coefficients into the quadratic formula
Let's substitute [tex]\(a = 1\)[/tex], [tex]\(b = 4\)[/tex], and [tex]\(c = -3\)[/tex] into the quadratic formula.
[tex]\[ x = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot (-3)}}{2 \cdot 1} \][/tex]
### Step 5: Simplify under the square root
Calculate the discriminant (inside the square root):
[tex]\[ 4^2 - 4 \cdot 1 \cdot (-3) = 16 + 12 = 28 \][/tex]
So the expression becomes:
[tex]\[ x = \frac{-4 \pm \sqrt{28}}{2} \][/tex]
### Step 6: Simplify the square root of 28
We can simplify [tex]\(\sqrt{28}\)[/tex]:
[tex]\[ \sqrt{28} = \sqrt{4 \cdot 7} = 2\sqrt{7} \][/tex]
### Step 7: Substitute back the simplified square root
Now our expression is:
[tex]\[ x = \frac{-4 \pm 2\sqrt{7}}{2} \][/tex]
### Step 8: Simplify the fraction
Separate the terms in the numerator to simplify:
[tex]\[ x = \frac{-4}{2} \pm \frac{2\sqrt{7}}{2} \][/tex]
[tex]\[ x = -2 \pm \sqrt{7} \][/tex]
### Step 9: Write the solutions
We have two solutions:
[tex]\[ x_1 = -2 + \sqrt{7} \][/tex]
[tex]\[ x_2 = -2 - \sqrt{7} \][/tex]
So, the solutions to the equation [tex]\(x^2 + 4x = 3\)[/tex] are:
[tex]\[ x = -2 + \sqrt{7} \][/tex]
[tex]\[ x = -2 - \sqrt{7} \][/tex]
These are the solutions for the given quadratic equation.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.