Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Solve the following equation. Show all your work.

[tex]\[
\frac{x}{x-2}+\frac{x-1}{x+1}=-1
\][/tex]

Sagot :

Given Equation:
[tex]\[ \frac{x}{x-2} + \frac{x-1}{x+1} = -1 \][/tex]

Step 1: Combine the fractions on the left-hand side.

To combine the fractions, we need a common denominator, which is [tex]\((x-2)(x+1)\)[/tex].

[tex]\[ \frac{x(x+1) + (x-1)(x-2)}{(x-2)(x+1)} = \frac{x(x+1) + (x-1)(x-2)}{(x-2)(x+1)} \][/tex]

Step 2: Simplify the numerators.

Expand the numerators of both fractions:

[tex]\[ x(x+1) = x^2 + x \quad \text{and} \quad (x-1)(x-2) = x^2 - 3x + 2 \][/tex]

Now combine these:

[tex]\[ x^2 + x + x^2 - 3x + 2 = 2x^2 - 2x + 2 \][/tex]

So the fraction becomes:

[tex]\[ \frac{2x^2 - 2x + 2}{(x-2)(x+1)} = -1 \][/tex]

Step 3: Solve the equation by clearing the fraction.

Multiply both sides of the equation by [tex]\((x-2)(x+1)\)[/tex] to clear the denominator:

[tex]\[ 2x^2 - 2x + 2 = -1 \cdot (x-2)(x+1) \][/tex]

Simplify the right-hand side:

[tex]\[ -1 \cdot (x-2)(x+1) = -(x^2 - x - 2) \][/tex]

[tex]\[ -(x^2 - x - 2) = -x^2 + x + 2 \][/tex]

So now we have:

[tex]\[ 2x^2 - 2x + 2 = -x^2 + x + 2 \][/tex]

Step 4: Combine like terms to form a polynomial equation.

Move all terms to one side to set the equation to zero:

[tex]\[ 2x^2 - 2x + 2 + x^2 - x - 2 = 0 \][/tex]

Combine the like terms:

[tex]\[ 3x^2 - 3x = 0 \][/tex]

Step 5: Factor the resulting equation.

[tex]\[ 3x(x - 1) = 0 \][/tex]

The solutions to this equation are found by setting each factor to zero:

[tex]\[ 3x = 0 \quad \text{or} \quad x - 1 = 0 \][/tex]

Therefore,

[tex]\[ x = 0 \quad \text{or} \quad x = 1 \][/tex]

Thus, the solutions to the equation are:

[tex]\[ x = 0 \quad \text{or} \quad x = 1 \][/tex]