Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Given Equation:
[tex]\[ \frac{x}{x-2} + \frac{x-1}{x+1} = -1 \][/tex]
Step 1: Combine the fractions on the left-hand side.
To combine the fractions, we need a common denominator, which is [tex]\((x-2)(x+1)\)[/tex].
[tex]\[ \frac{x(x+1) + (x-1)(x-2)}{(x-2)(x+1)} = \frac{x(x+1) + (x-1)(x-2)}{(x-2)(x+1)} \][/tex]
Step 2: Simplify the numerators.
Expand the numerators of both fractions:
[tex]\[ x(x+1) = x^2 + x \quad \text{and} \quad (x-1)(x-2) = x^2 - 3x + 2 \][/tex]
Now combine these:
[tex]\[ x^2 + x + x^2 - 3x + 2 = 2x^2 - 2x + 2 \][/tex]
So the fraction becomes:
[tex]\[ \frac{2x^2 - 2x + 2}{(x-2)(x+1)} = -1 \][/tex]
Step 3: Solve the equation by clearing the fraction.
Multiply both sides of the equation by [tex]\((x-2)(x+1)\)[/tex] to clear the denominator:
[tex]\[ 2x^2 - 2x + 2 = -1 \cdot (x-2)(x+1) \][/tex]
Simplify the right-hand side:
[tex]\[ -1 \cdot (x-2)(x+1) = -(x^2 - x - 2) \][/tex]
[tex]\[ -(x^2 - x - 2) = -x^2 + x + 2 \][/tex]
So now we have:
[tex]\[ 2x^2 - 2x + 2 = -x^2 + x + 2 \][/tex]
Step 4: Combine like terms to form a polynomial equation.
Move all terms to one side to set the equation to zero:
[tex]\[ 2x^2 - 2x + 2 + x^2 - x - 2 = 0 \][/tex]
Combine the like terms:
[tex]\[ 3x^2 - 3x = 0 \][/tex]
Step 5: Factor the resulting equation.
[tex]\[ 3x(x - 1) = 0 \][/tex]
The solutions to this equation are found by setting each factor to zero:
[tex]\[ 3x = 0 \quad \text{or} \quad x - 1 = 0 \][/tex]
Therefore,
[tex]\[ x = 0 \quad \text{or} \quad x = 1 \][/tex]
Thus, the solutions to the equation are:
[tex]\[ x = 0 \quad \text{or} \quad x = 1 \][/tex]
[tex]\[ \frac{x}{x-2} + \frac{x-1}{x+1} = -1 \][/tex]
Step 1: Combine the fractions on the left-hand side.
To combine the fractions, we need a common denominator, which is [tex]\((x-2)(x+1)\)[/tex].
[tex]\[ \frac{x(x+1) + (x-1)(x-2)}{(x-2)(x+1)} = \frac{x(x+1) + (x-1)(x-2)}{(x-2)(x+1)} \][/tex]
Step 2: Simplify the numerators.
Expand the numerators of both fractions:
[tex]\[ x(x+1) = x^2 + x \quad \text{and} \quad (x-1)(x-2) = x^2 - 3x + 2 \][/tex]
Now combine these:
[tex]\[ x^2 + x + x^2 - 3x + 2 = 2x^2 - 2x + 2 \][/tex]
So the fraction becomes:
[tex]\[ \frac{2x^2 - 2x + 2}{(x-2)(x+1)} = -1 \][/tex]
Step 3: Solve the equation by clearing the fraction.
Multiply both sides of the equation by [tex]\((x-2)(x+1)\)[/tex] to clear the denominator:
[tex]\[ 2x^2 - 2x + 2 = -1 \cdot (x-2)(x+1) \][/tex]
Simplify the right-hand side:
[tex]\[ -1 \cdot (x-2)(x+1) = -(x^2 - x - 2) \][/tex]
[tex]\[ -(x^2 - x - 2) = -x^2 + x + 2 \][/tex]
So now we have:
[tex]\[ 2x^2 - 2x + 2 = -x^2 + x + 2 \][/tex]
Step 4: Combine like terms to form a polynomial equation.
Move all terms to one side to set the equation to zero:
[tex]\[ 2x^2 - 2x + 2 + x^2 - x - 2 = 0 \][/tex]
Combine the like terms:
[tex]\[ 3x^2 - 3x = 0 \][/tex]
Step 5: Factor the resulting equation.
[tex]\[ 3x(x - 1) = 0 \][/tex]
The solutions to this equation are found by setting each factor to zero:
[tex]\[ 3x = 0 \quad \text{or} \quad x - 1 = 0 \][/tex]
Therefore,
[tex]\[ x = 0 \quad \text{or} \quad x = 1 \][/tex]
Thus, the solutions to the equation are:
[tex]\[ x = 0 \quad \text{or} \quad x = 1 \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.