Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Given Equation:
[tex]\[ \frac{x}{x-2} + \frac{x-1}{x+1} = -1 \][/tex]
Step 1: Combine the fractions on the left-hand side.
To combine the fractions, we need a common denominator, which is [tex]\((x-2)(x+1)\)[/tex].
[tex]\[ \frac{x(x+1) + (x-1)(x-2)}{(x-2)(x+1)} = \frac{x(x+1) + (x-1)(x-2)}{(x-2)(x+1)} \][/tex]
Step 2: Simplify the numerators.
Expand the numerators of both fractions:
[tex]\[ x(x+1) = x^2 + x \quad \text{and} \quad (x-1)(x-2) = x^2 - 3x + 2 \][/tex]
Now combine these:
[tex]\[ x^2 + x + x^2 - 3x + 2 = 2x^2 - 2x + 2 \][/tex]
So the fraction becomes:
[tex]\[ \frac{2x^2 - 2x + 2}{(x-2)(x+1)} = -1 \][/tex]
Step 3: Solve the equation by clearing the fraction.
Multiply both sides of the equation by [tex]\((x-2)(x+1)\)[/tex] to clear the denominator:
[tex]\[ 2x^2 - 2x + 2 = -1 \cdot (x-2)(x+1) \][/tex]
Simplify the right-hand side:
[tex]\[ -1 \cdot (x-2)(x+1) = -(x^2 - x - 2) \][/tex]
[tex]\[ -(x^2 - x - 2) = -x^2 + x + 2 \][/tex]
So now we have:
[tex]\[ 2x^2 - 2x + 2 = -x^2 + x + 2 \][/tex]
Step 4: Combine like terms to form a polynomial equation.
Move all terms to one side to set the equation to zero:
[tex]\[ 2x^2 - 2x + 2 + x^2 - x - 2 = 0 \][/tex]
Combine the like terms:
[tex]\[ 3x^2 - 3x = 0 \][/tex]
Step 5: Factor the resulting equation.
[tex]\[ 3x(x - 1) = 0 \][/tex]
The solutions to this equation are found by setting each factor to zero:
[tex]\[ 3x = 0 \quad \text{or} \quad x - 1 = 0 \][/tex]
Therefore,
[tex]\[ x = 0 \quad \text{or} \quad x = 1 \][/tex]
Thus, the solutions to the equation are:
[tex]\[ x = 0 \quad \text{or} \quad x = 1 \][/tex]
[tex]\[ \frac{x}{x-2} + \frac{x-1}{x+1} = -1 \][/tex]
Step 1: Combine the fractions on the left-hand side.
To combine the fractions, we need a common denominator, which is [tex]\((x-2)(x+1)\)[/tex].
[tex]\[ \frac{x(x+1) + (x-1)(x-2)}{(x-2)(x+1)} = \frac{x(x+1) + (x-1)(x-2)}{(x-2)(x+1)} \][/tex]
Step 2: Simplify the numerators.
Expand the numerators of both fractions:
[tex]\[ x(x+1) = x^2 + x \quad \text{and} \quad (x-1)(x-2) = x^2 - 3x + 2 \][/tex]
Now combine these:
[tex]\[ x^2 + x + x^2 - 3x + 2 = 2x^2 - 2x + 2 \][/tex]
So the fraction becomes:
[tex]\[ \frac{2x^2 - 2x + 2}{(x-2)(x+1)} = -1 \][/tex]
Step 3: Solve the equation by clearing the fraction.
Multiply both sides of the equation by [tex]\((x-2)(x+1)\)[/tex] to clear the denominator:
[tex]\[ 2x^2 - 2x + 2 = -1 \cdot (x-2)(x+1) \][/tex]
Simplify the right-hand side:
[tex]\[ -1 \cdot (x-2)(x+1) = -(x^2 - x - 2) \][/tex]
[tex]\[ -(x^2 - x - 2) = -x^2 + x + 2 \][/tex]
So now we have:
[tex]\[ 2x^2 - 2x + 2 = -x^2 + x + 2 \][/tex]
Step 4: Combine like terms to form a polynomial equation.
Move all terms to one side to set the equation to zero:
[tex]\[ 2x^2 - 2x + 2 + x^2 - x - 2 = 0 \][/tex]
Combine the like terms:
[tex]\[ 3x^2 - 3x = 0 \][/tex]
Step 5: Factor the resulting equation.
[tex]\[ 3x(x - 1) = 0 \][/tex]
The solutions to this equation are found by setting each factor to zero:
[tex]\[ 3x = 0 \quad \text{or} \quad x - 1 = 0 \][/tex]
Therefore,
[tex]\[ x = 0 \quad \text{or} \quad x = 1 \][/tex]
Thus, the solutions to the equation are:
[tex]\[ x = 0 \quad \text{or} \quad x = 1 \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.