Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Alright, let's break down the given polynomial step-by-step to determine the missing exponent on the [tex]\( m \)[/tex] in the term [tex]\( 2 m^2 n^3 \)[/tex].
The given polynomial is:
[tex]\[ -2 m^2 n^3 + 2 m^2 n^3 + 7 n^2 - 6 m^4 \][/tex]
First, simplify the polynomial by combining like terms:
1. Combine the terms [tex]\(-2 m^2 n^3\)[/tex] and [tex]\( 2 m^2 n^3\)[/tex]:
[tex]\[ -2 m^2 n^3 + 2 m^2 n^3 = 0 \][/tex]
2. After combining these terms, we are left with:
[tex]\[ 0 + 7 n^2 - 6 m^4 \][/tex]
[tex]\[ = 7 n^2 - 6 m^4 \][/tex]
Now we have a simplified polynomial:
[tex]\[ 7 n^2 - 6 m^4 \][/tex]
We can see that this simplified polynomial is a binomial (a polynomial with two terms) consisting of [tex]\( 7 n^2 \)[/tex] and [tex]\( -6 m^4 \)[/tex].
Next, let's examine the degrees of each term in the simplified polynomial:
- The degree of [tex]\( 7 n^2 \)[/tex] is 2 (since [tex]\( n^2 \)[/tex] has an exponent of 2).
- The degree of [tex]\( -6 m^4 \)[/tex] is 4 (since [tex]\( m^4 \)[/tex] has an exponent of 4).
To ensure that the entire polynomial has the highest degree of 4 (the degree of [tex]\( -6 m^4 \)[/tex]), we need to determine which exponent on the [tex]\( m \)[/tex] in the term [tex]\( 2 m^2 n^3 \)[/tex] must be adjusted.
By examining the original polynomial before simplification:
[tex]\[ -2 m^2 n^3 + 2 m^2 n^3 + 7 n^2 - 6 m^4 \][/tex]
Given that the simplified polynomial must result in a degree of 4 and identifying the highest degree in the term [tex]\( -6 m^4 \)[/tex], we infer that the missing exponent on the [tex]\( m \)[/tex] term (in [tex]\( 2 m^2 n^3 \)[/tex]) required to create such a default highest degree is:
[tex]\[ \boxed{4} \][/tex]
The given polynomial is:
[tex]\[ -2 m^2 n^3 + 2 m^2 n^3 + 7 n^2 - 6 m^4 \][/tex]
First, simplify the polynomial by combining like terms:
1. Combine the terms [tex]\(-2 m^2 n^3\)[/tex] and [tex]\( 2 m^2 n^3\)[/tex]:
[tex]\[ -2 m^2 n^3 + 2 m^2 n^3 = 0 \][/tex]
2. After combining these terms, we are left with:
[tex]\[ 0 + 7 n^2 - 6 m^4 \][/tex]
[tex]\[ = 7 n^2 - 6 m^4 \][/tex]
Now we have a simplified polynomial:
[tex]\[ 7 n^2 - 6 m^4 \][/tex]
We can see that this simplified polynomial is a binomial (a polynomial with two terms) consisting of [tex]\( 7 n^2 \)[/tex] and [tex]\( -6 m^4 \)[/tex].
Next, let's examine the degrees of each term in the simplified polynomial:
- The degree of [tex]\( 7 n^2 \)[/tex] is 2 (since [tex]\( n^2 \)[/tex] has an exponent of 2).
- The degree of [tex]\( -6 m^4 \)[/tex] is 4 (since [tex]\( m^4 \)[/tex] has an exponent of 4).
To ensure that the entire polynomial has the highest degree of 4 (the degree of [tex]\( -6 m^4 \)[/tex]), we need to determine which exponent on the [tex]\( m \)[/tex] in the term [tex]\( 2 m^2 n^3 \)[/tex] must be adjusted.
By examining the original polynomial before simplification:
[tex]\[ -2 m^2 n^3 + 2 m^2 n^3 + 7 n^2 - 6 m^4 \][/tex]
Given that the simplified polynomial must result in a degree of 4 and identifying the highest degree in the term [tex]\( -6 m^4 \)[/tex], we infer that the missing exponent on the [tex]\( m \)[/tex] term (in [tex]\( 2 m^2 n^3 \)[/tex]) required to create such a default highest degree is:
[tex]\[ \boxed{4} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.