Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Express each logarithm in terms of [tex]\(\ln 3\)[/tex] and [tex]\(\ln 5\)[/tex].

[tex]\(\ln \frac{81}{125}\)[/tex]

A. [tex]\(4 \ln 5 - 3 \ln 3\)[/tex]

B. [tex]\(5 \ln 3 - 3 \ln 4\)[/tex]

C. [tex]\(4 \ln 3 - 3 \ln 5\)[/tex]

D. [tex]\(3 \ln 4 - 5 \ln 3\)[/tex]


Sagot :

Certainly! Let's address how each logarithm can be expressed in terms of [tex]\(\ln 3\)[/tex] and [tex]\(\ln 5\)[/tex].

### 1. [tex]\(\ln \frac{81}{125}\)[/tex]
We begin by simplifying [tex]\(\ln \frac{81}{125}\)[/tex].

Using properties of logarithms:
[tex]\[ \ln \frac{a}{b} = \ln a - \ln b \][/tex]
we can rewrite:
[tex]\[ \ln \frac{81}{125} = \ln 81 - \ln 125 \][/tex]

Next, we express [tex]\(\ln 81\)[/tex] and [tex]\(\ln 125\)[/tex] in terms of [tex]\(\ln 3\)[/tex] and [tex]\(\ln 5\)[/tex].

[tex]\[ 81 = 3^4 \implies \ln 81 = \ln (3^4) = 4 \ln 3 \][/tex]
[tex]\[ 125 = 5^3 \implies \ln 125 = \ln (5^3) = 3 \ln 5 \][/tex]

Now, substituting these back into the equation, we get:
[tex]\[ \ln \frac{81}{125} = 4 \ln 3 - 3 \ln 5 \][/tex]

Thus, [tex]\(\ln \frac{81}{125}\)[/tex] is expressed in terms of [tex]\(\ln 3\)[/tex] and [tex]\(\ln 5\)[/tex] as:
[tex]\[ \boxed{4 \ln 3 - 3 \ln 5} \][/tex]

### 2. [tex]\(4 \ln 5 - 3 \ln 3\)[/tex]
Since this is already expressed in terms of [tex]\(\ln 3\)[/tex] and [tex]\(\ln 5\)[/tex], we do not need to perform any additional calculations:
[tex]\[ \boxed{4 \ln 5 - 3 \ln 3} \][/tex]

### 3. [tex]\(5 \ln 3 - 3 \ln 4\)[/tex]
We need to express [tex]\(\ln 4\)[/tex] in terms of [tex]\(\ln 5\)[/tex] or [tex]\(\ln 3\)[/tex].

Knowing that:
[tex]\[ 4 = 2^2 \implies \ln 4 = \ln (2^2) = 2 \ln 2 \][/tex]

But, [tex]\(\ln 2\)[/tex] is not directly related to [tex]\(\ln 3\)[/tex] or [tex]\(\ln 5\)[/tex] in a simple form, so we will leave this expression in terms of [tex]\(\ln 4\)[/tex].

Thus:
[tex]\[ \boxed{5 \ln 3 - 3 \ln 4} \][/tex]

### 4. [tex]\(4 \ln 3 - 3 \ln 5\)[/tex]
This is exactly the same as what we derived for [tex]\(\ln \frac{81}{125}\)[/tex]:
[tex]\[ \boxed{4 \ln 3 - 3 \ln 5} \][/tex]

### 5. [tex]\(3 \ln 4 - 5 \ln 3\)[/tex]
Similarly to before, [tex]\(\ln 4\)[/tex] is related to [tex]\(\ln 2\)[/tex], but for simplicity, we leave the expression:

[tex]\[ \boxed{3 \ln 4 - 5 \ln 3} \][/tex]

In conclusion:

- [tex]\(\ln \frac{81}{125} = 4 \ln 3 - 3 \ln 5\)[/tex]
- [tex]\(4 \ln 5 - 3 \ln 3\)[/tex]
- [tex]\(5 \ln 3 - 3 \ln 4\)[/tex]
- [tex]\(4 \ln 3 - 3 \ln 5\)[/tex]
- [tex]\(3 \ln 4 - 5 \ln 3\)[/tex]

So,
- The first expression [tex]\(\ln \frac{81}{125}\)[/tex] simplifies to [tex]\(4 \ln 3 - 3 \ln 5\)[/tex].
- The second expression [tex]\(4 \ln 5 - 3 \ln 3\)[/tex] is given as is.
- The third expression [tex]\(5 \ln 3 - 3 \ln 4\)[/tex] is given as is and includes [tex]\(\ln 4\)[/tex].
- The fourth expression [tex]\(4 \ln 3 - 3 \ln 5\)[/tex] matches what we derived above for [tex]\(\ln 81/125\)[/tex].
- The fifth expression [tex]\(3 \ln 4 - 5 \ln 3\)[/tex] is in terms of [tex]\(\ln 4\)[/tex].

Hence, the equivalent answer to the given logarithmic expressions confirms that [tex]\( \ln \frac{81}{125} = 4 \ln 3 - 3 \ln 5 \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.