Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the number of different combinations of three students that can be chosen from a group of seven, we use the combination formula:
[tex]\[ { }_n C_r = \frac{n!}{(n-r)! \cdot r!} \][/tex]
For this particular problem, we have [tex]\( n = 7 \)[/tex] and [tex]\( r = 3 \)[/tex]. Plugging these values into the combination formula, we get:
[tex]\[ { }_7 C_3 = \frac{7!}{(7-3)! \cdot 3!} \][/tex]
First, calculate the factorials:
- [tex]\( 7! \)[/tex] (7 factorial) is the product of all positive integers up to 7:
[tex]\[ 7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 5040 \][/tex]
- [tex]\( (7-3)! = 4! \)[/tex] (4 factorial) is the product of all positive integers up to 4:
[tex]\[ 4! = 4 \times 3 \times 2 \times 1 = 24 \][/tex]
- [tex]\( 3! \)[/tex] (3 factorial) is the product of all positive integers up to 3:
[tex]\[ 3! = 3 \times 2 \times 1 = 6 \][/tex]
Now, substitute these factorials back into the combination formula:
[tex]\[ { }_7 C_3 = \frac{5040}{24 \cdot 6} \][/tex]
Calculate the denominator:
[tex]\[ 24 \cdot 6 = 144 \][/tex]
So, we have:
[tex]\[ { }_7 C_3 = \frac{5040}{144} \][/tex]
Finally, divide 5040 by 144:
[tex]\[ \frac{5040}{144} = 35 \][/tex]
Therefore, the number of different combinations of three students from a group of seven is:
[tex]\[ \boxed{35} \][/tex]
[tex]\[ { }_n C_r = \frac{n!}{(n-r)! \cdot r!} \][/tex]
For this particular problem, we have [tex]\( n = 7 \)[/tex] and [tex]\( r = 3 \)[/tex]. Plugging these values into the combination formula, we get:
[tex]\[ { }_7 C_3 = \frac{7!}{(7-3)! \cdot 3!} \][/tex]
First, calculate the factorials:
- [tex]\( 7! \)[/tex] (7 factorial) is the product of all positive integers up to 7:
[tex]\[ 7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 5040 \][/tex]
- [tex]\( (7-3)! = 4! \)[/tex] (4 factorial) is the product of all positive integers up to 4:
[tex]\[ 4! = 4 \times 3 \times 2 \times 1 = 24 \][/tex]
- [tex]\( 3! \)[/tex] (3 factorial) is the product of all positive integers up to 3:
[tex]\[ 3! = 3 \times 2 \times 1 = 6 \][/tex]
Now, substitute these factorials back into the combination formula:
[tex]\[ { }_7 C_3 = \frac{5040}{24 \cdot 6} \][/tex]
Calculate the denominator:
[tex]\[ 24 \cdot 6 = 144 \][/tex]
So, we have:
[tex]\[ { }_7 C_3 = \frac{5040}{144} \][/tex]
Finally, divide 5040 by 144:
[tex]\[ \frac{5040}{144} = 35 \][/tex]
Therefore, the number of different combinations of three students from a group of seven is:
[tex]\[ \boxed{35} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.