Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the number of different combinations of three students that can be chosen from a group of seven, we use the combination formula:
[tex]\[ { }_n C_r = \frac{n!}{(n-r)! \cdot r!} \][/tex]
For this particular problem, we have [tex]\( n = 7 \)[/tex] and [tex]\( r = 3 \)[/tex]. Plugging these values into the combination formula, we get:
[tex]\[ { }_7 C_3 = \frac{7!}{(7-3)! \cdot 3!} \][/tex]
First, calculate the factorials:
- [tex]\( 7! \)[/tex] (7 factorial) is the product of all positive integers up to 7:
[tex]\[ 7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 5040 \][/tex]
- [tex]\( (7-3)! = 4! \)[/tex] (4 factorial) is the product of all positive integers up to 4:
[tex]\[ 4! = 4 \times 3 \times 2 \times 1 = 24 \][/tex]
- [tex]\( 3! \)[/tex] (3 factorial) is the product of all positive integers up to 3:
[tex]\[ 3! = 3 \times 2 \times 1 = 6 \][/tex]
Now, substitute these factorials back into the combination formula:
[tex]\[ { }_7 C_3 = \frac{5040}{24 \cdot 6} \][/tex]
Calculate the denominator:
[tex]\[ 24 \cdot 6 = 144 \][/tex]
So, we have:
[tex]\[ { }_7 C_3 = \frac{5040}{144} \][/tex]
Finally, divide 5040 by 144:
[tex]\[ \frac{5040}{144} = 35 \][/tex]
Therefore, the number of different combinations of three students from a group of seven is:
[tex]\[ \boxed{35} \][/tex]
[tex]\[ { }_n C_r = \frac{n!}{(n-r)! \cdot r!} \][/tex]
For this particular problem, we have [tex]\( n = 7 \)[/tex] and [tex]\( r = 3 \)[/tex]. Plugging these values into the combination formula, we get:
[tex]\[ { }_7 C_3 = \frac{7!}{(7-3)! \cdot 3!} \][/tex]
First, calculate the factorials:
- [tex]\( 7! \)[/tex] (7 factorial) is the product of all positive integers up to 7:
[tex]\[ 7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 5040 \][/tex]
- [tex]\( (7-3)! = 4! \)[/tex] (4 factorial) is the product of all positive integers up to 4:
[tex]\[ 4! = 4 \times 3 \times 2 \times 1 = 24 \][/tex]
- [tex]\( 3! \)[/tex] (3 factorial) is the product of all positive integers up to 3:
[tex]\[ 3! = 3 \times 2 \times 1 = 6 \][/tex]
Now, substitute these factorials back into the combination formula:
[tex]\[ { }_7 C_3 = \frac{5040}{24 \cdot 6} \][/tex]
Calculate the denominator:
[tex]\[ 24 \cdot 6 = 144 \][/tex]
So, we have:
[tex]\[ { }_7 C_3 = \frac{5040}{144} \][/tex]
Finally, divide 5040 by 144:
[tex]\[ \frac{5040}{144} = 35 \][/tex]
Therefore, the number of different combinations of three students from a group of seven is:
[tex]\[ \boxed{35} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.