Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the equation of the line of best fit for the given data, we'll use a linear regression method. Here is the step-by-step solution:
1. Gather the Data Points:
[tex]\[ (4, 3), (6, 4), (8, 9), (11, 12), (13, 17) \][/tex]
2. Determine the General Form of the Line of Best Fit Equation:
The equation of the line of best fit is generally written as:
[tex]\[ y = mx + b \][/tex]
where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
3. Calculate the Slope (m) and Y-Intercept (b):
For these calculations, techniques from linear algebra or statistical methods are typically used to minimize the sum of squared differences between the observed values [tex]\( y \)[/tex] and the values predicted by the linear model.
4. Provide the Solution:
The slope (m) and y-intercept (b) have been found to be:
[tex]\[ m = 1.560 \][/tex]
[tex]\[ b = -4.105 \][/tex]
5. Form the Equation:
Substitute [tex]\( m \)[/tex] and [tex]\( b \)[/tex] into the general form of the linear equation:
[tex]\[ y = 1.560x - 4.105 \][/tex]
6. Round the Values:
Both the slope and y-intercept have already been rounded to three decimal places.
Therefore, the equation of the line of best fit is:
[tex]\[ y = 1.560x - 4.105 \][/tex]
Given the multiple-choice options:
A. [tex]\( y = -1.560x + 4.105 \)[/tex]
B. [tex]\( y = -4.105x + 1.560 \)[/tex]
C. [tex]\( y = 1.560x - 4.105 \)[/tex]
D. [tex]\( y = 4.105x - 1.560 \)[/tex]
The correct option is:
[tex]\[ \boxed{C} \][/tex]
1. Gather the Data Points:
[tex]\[ (4, 3), (6, 4), (8, 9), (11, 12), (13, 17) \][/tex]
2. Determine the General Form of the Line of Best Fit Equation:
The equation of the line of best fit is generally written as:
[tex]\[ y = mx + b \][/tex]
where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
3. Calculate the Slope (m) and Y-Intercept (b):
For these calculations, techniques from linear algebra or statistical methods are typically used to minimize the sum of squared differences between the observed values [tex]\( y \)[/tex] and the values predicted by the linear model.
4. Provide the Solution:
The slope (m) and y-intercept (b) have been found to be:
[tex]\[ m = 1.560 \][/tex]
[tex]\[ b = -4.105 \][/tex]
5. Form the Equation:
Substitute [tex]\( m \)[/tex] and [tex]\( b \)[/tex] into the general form of the linear equation:
[tex]\[ y = 1.560x - 4.105 \][/tex]
6. Round the Values:
Both the slope and y-intercept have already been rounded to three decimal places.
Therefore, the equation of the line of best fit is:
[tex]\[ y = 1.560x - 4.105 \][/tex]
Given the multiple-choice options:
A. [tex]\( y = -1.560x + 4.105 \)[/tex]
B. [tex]\( y = -4.105x + 1.560 \)[/tex]
C. [tex]\( y = 1.560x - 4.105 \)[/tex]
D. [tex]\( y = 4.105x - 1.560 \)[/tex]
The correct option is:
[tex]\[ \boxed{C} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.