Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which of the given algebraic expressions are polynomials, we need to recall the definition of a polynomial. A polynomial is a mathematical expression involving a sum of powers in one or more variables multiplied by coefficients. The exponents of these variables must be non-negative integers.
Let's analyze each expression one by one:
1. [tex]\(\pi x - \sqrt{3} + 5y\)[/tex]
In this expression, [tex]\(\pi\)[/tex] and [tex]\(\sqrt{3}\)[/tex] are constants, and both [tex]\(x\)[/tex] and [tex]\(y\)[/tex] appear to the first power, which is a non-negative integer. Therefore, [tex]\(\pi x - \sqrt{3} + 5y\)[/tex] is a polynomial.
2. [tex]\(x^2 y^2 - 4 x^3 + 12 y\)[/tex]
Here, [tex]\(x\)[/tex] and [tex]\(y\)[/tex] appear to integer powers: [tex]\(x\)[/tex] and [tex]\(y\)[/tex] both to the power of 2, [tex]\(x\)[/tex] to the power of 3, and [tex]\(y\)[/tex] to the power of 1. All powers are non-negative integers. Therefore, [tex]\(x^2 y^2 - 4 x^3 + 12 y\)[/tex] is a polynomial.
3. [tex]\(\frac{4}{x} - x^2\)[/tex]
In this expression, [tex]\(\frac{4}{x}\)[/tex] can be rewritten as [tex]\(4x^{-1}\)[/tex]. The exponent [tex]\(-1\)[/tex] is a negative integer, which does not satisfy the definition of a polynomial. Therefore, [tex]\(\frac{4}{x} - x^2\)[/tex] is not a polynomial.
4. [tex]\(\sqrt{x} - 16\)[/tex]
The term [tex]\(\sqrt{x}\)[/tex] can be written as [tex]\(x^{1/2}\)[/tex]. The exponent [tex]\(1/2\)[/tex] is not an integer, which does not satisfy the definition of a polynomial. Therefore, [tex]\(\sqrt{x} - 16\)[/tex] is not a polynomial.
5. [tex]\(3.9 x^3 - 4.1 x^2 + 7.3\)[/tex]
In this expression, [tex]\(x\)[/tex] appears to the powers of 3 and 2, both of which are non-negative integers. The constant term [tex]\(7.3\)[/tex] is also valid in a polynomial. Therefore, [tex]\(3.9 x^3 - 4.1 x^2 + 7.3\)[/tex] is a polynomial.
Summary:
- [tex]\(\pi x - \sqrt{3} + 5y\)[/tex] is a polynomial
- [tex]\(x^2 y^2 - 4 x^3 + 12 y\)[/tex] is a polynomial
- [tex]\(\frac{4}{x} - x^2\)[/tex] is not a polynomial
- [tex]\(\sqrt{x} - 16\)[/tex] is not a polynomial
- [tex]\(3.9 x^3 - 4.1 x^2 + 7.3\)[/tex] is a polynomial
Let's analyze each expression one by one:
1. [tex]\(\pi x - \sqrt{3} + 5y\)[/tex]
In this expression, [tex]\(\pi\)[/tex] and [tex]\(\sqrt{3}\)[/tex] are constants, and both [tex]\(x\)[/tex] and [tex]\(y\)[/tex] appear to the first power, which is a non-negative integer. Therefore, [tex]\(\pi x - \sqrt{3} + 5y\)[/tex] is a polynomial.
2. [tex]\(x^2 y^2 - 4 x^3 + 12 y\)[/tex]
Here, [tex]\(x\)[/tex] and [tex]\(y\)[/tex] appear to integer powers: [tex]\(x\)[/tex] and [tex]\(y\)[/tex] both to the power of 2, [tex]\(x\)[/tex] to the power of 3, and [tex]\(y\)[/tex] to the power of 1. All powers are non-negative integers. Therefore, [tex]\(x^2 y^2 - 4 x^3 + 12 y\)[/tex] is a polynomial.
3. [tex]\(\frac{4}{x} - x^2\)[/tex]
In this expression, [tex]\(\frac{4}{x}\)[/tex] can be rewritten as [tex]\(4x^{-1}\)[/tex]. The exponent [tex]\(-1\)[/tex] is a negative integer, which does not satisfy the definition of a polynomial. Therefore, [tex]\(\frac{4}{x} - x^2\)[/tex] is not a polynomial.
4. [tex]\(\sqrt{x} - 16\)[/tex]
The term [tex]\(\sqrt{x}\)[/tex] can be written as [tex]\(x^{1/2}\)[/tex]. The exponent [tex]\(1/2\)[/tex] is not an integer, which does not satisfy the definition of a polynomial. Therefore, [tex]\(\sqrt{x} - 16\)[/tex] is not a polynomial.
5. [tex]\(3.9 x^3 - 4.1 x^2 + 7.3\)[/tex]
In this expression, [tex]\(x\)[/tex] appears to the powers of 3 and 2, both of which are non-negative integers. The constant term [tex]\(7.3\)[/tex] is also valid in a polynomial. Therefore, [tex]\(3.9 x^3 - 4.1 x^2 + 7.3\)[/tex] is a polynomial.
Summary:
- [tex]\(\pi x - \sqrt{3} + 5y\)[/tex] is a polynomial
- [tex]\(x^2 y^2 - 4 x^3 + 12 y\)[/tex] is a polynomial
- [tex]\(\frac{4}{x} - x^2\)[/tex] is not a polynomial
- [tex]\(\sqrt{x} - 16\)[/tex] is not a polynomial
- [tex]\(3.9 x^3 - 4.1 x^2 + 7.3\)[/tex] is a polynomial
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.