Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To graph the function [tex]\( f(x) = 3 \cdot (0.5)^x \)[/tex], let's follow these steps:
1. Identify Key Characteristics:
- The base function is [tex]\( (0.5)^x \)[/tex], which is an exponential decay function because the base [tex]\( 0.5 \)[/tex] is between 0 and 1.
- Multiplying by 3 will stretch the graph vertically by a factor of 3.
2. Determine Key Points:
- When [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 3 \cdot (0.5)^0 = 3 \cdot 1 = 3 \][/tex]
So, the point [tex]\( (0, 3) \)[/tex] is on the graph.
- When [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 3 \cdot (0.5)^1 = 3 \cdot 0.5 = 1.5 \][/tex]
So, the point [tex]\( (1, 1.5) \)[/tex] is on the graph.
- When [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = 3 \cdot (0.5)^{-1} = 3 \cdot 2 = 6 \][/tex]
So, the point [tex]\( (-1, 6) \)[/tex] is on the graph.
3. Plot the Points:
- Plot the points [tex]\( (0, 3) \)[/tex], [tex]\( (1, 1.5) \)[/tex], and [tex]\( (-1, 6) \)[/tex].
4. Draw the Exponential Curve:
- As [tex]\( x \)[/tex] increases, [tex]\( (0.5)^x \)[/tex] gets closer to 0, so [tex]\( f(x) \)[/tex] will approach 0 but never touch the x-axis.
- As [tex]\( x \)[/tex] decreases (becomes more negative), [tex]\( (0.5)^x \)[/tex] increases exponentially, and thus [tex]\( f(x) \)[/tex] will increase exponentially since it is multiplied by 3.
5. Check for Asymptote:
- The horizontal asymptote of the function is the x-axis ([tex]\( y = 0 \)[/tex]), since the exponential function will approach 0 but never reach it as [tex]\( x \)[/tex] goes to positive infinity.
Now, examine the provided answer choices and determine which graph has the following characteristics:
- A curve passing through the points (0, 3), (1, 1.5), and (-1, 6).
- An exponential decay shape, approaching zero as x increases.
- A horizontal asymptote at y = 0.
Based on these characteristics, compare with the given options A, B, C, and D, and match the correct graph with the described points and behavior.
1. Identify Key Characteristics:
- The base function is [tex]\( (0.5)^x \)[/tex], which is an exponential decay function because the base [tex]\( 0.5 \)[/tex] is between 0 and 1.
- Multiplying by 3 will stretch the graph vertically by a factor of 3.
2. Determine Key Points:
- When [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 3 \cdot (0.5)^0 = 3 \cdot 1 = 3 \][/tex]
So, the point [tex]\( (0, 3) \)[/tex] is on the graph.
- When [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 3 \cdot (0.5)^1 = 3 \cdot 0.5 = 1.5 \][/tex]
So, the point [tex]\( (1, 1.5) \)[/tex] is on the graph.
- When [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = 3 \cdot (0.5)^{-1} = 3 \cdot 2 = 6 \][/tex]
So, the point [tex]\( (-1, 6) \)[/tex] is on the graph.
3. Plot the Points:
- Plot the points [tex]\( (0, 3) \)[/tex], [tex]\( (1, 1.5) \)[/tex], and [tex]\( (-1, 6) \)[/tex].
4. Draw the Exponential Curve:
- As [tex]\( x \)[/tex] increases, [tex]\( (0.5)^x \)[/tex] gets closer to 0, so [tex]\( f(x) \)[/tex] will approach 0 but never touch the x-axis.
- As [tex]\( x \)[/tex] decreases (becomes more negative), [tex]\( (0.5)^x \)[/tex] increases exponentially, and thus [tex]\( f(x) \)[/tex] will increase exponentially since it is multiplied by 3.
5. Check for Asymptote:
- The horizontal asymptote of the function is the x-axis ([tex]\( y = 0 \)[/tex]), since the exponential function will approach 0 but never reach it as [tex]\( x \)[/tex] goes to positive infinity.
Now, examine the provided answer choices and determine which graph has the following characteristics:
- A curve passing through the points (0, 3), (1, 1.5), and (-1, 6).
- An exponential decay shape, approaching zero as x increases.
- A horizontal asymptote at y = 0.
Based on these characteristics, compare with the given options A, B, C, and D, and match the correct graph with the described points and behavior.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.