Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Absolutely, let's tackle the given problem with careful consideration of each part. We'll go through parts (a) through (c) step-by-step.
### Part (a): Sketching the Total Revenue (TR) Graph
To sketch the TR against [tex]\( Q \)[/tex] on the interval [tex]\( 0 \leq Q \leq 10 \)[/tex], let's plot the given functions:
1. For [tex]\( 0 \leq Q \leq 5 \)[/tex]:
[tex]\[ TR = 0.2 Q^3 \][/tex]
2. For [tex]\( 5 \leq Q \leq 10 \)[/tex]:
[tex]\[ TR = -4 Q^2 + 55 Q - 150 \][/tex]
Let's identify key points:
- At [tex]\( Q = 0 \)[/tex]:
- [tex]\( TR = 0.2 \times 0^3 = 0 \)[/tex]
- At [tex]\( Q = 5 \)[/tex]:
- Using [tex]\( TR = 0.2 Q^3 \)[/tex]:
[tex]\[ TR = 0.2 \times 5^3 = 0.2 \times 125 = 25 \][/tex]
- Using [tex]\( TR = -4Q^2 + 55Q - 150 \)[/tex]:
[tex]\[ TR = -4 \times 5^2 + 55 \times 5 - 150 = -100 + 275 - 150 = 25 \][/tex]
(Both functions yield the same value at [tex]\( Q = 5 \)[/tex], ensuring continuity.)
- At [tex]\( Q = 10 \)[/tex]:
- [tex]\( TR = -4 \times 10^2 + 55 \times 10 - 150 = -400 + 550 - 150 = 0 \)[/tex]
A rough sketch of these segments will show [tex]\( TR \)[/tex] increasing as [tex]\( Q \)[/tex] increases from 0 to 5, reaching a peak, and then decreasing as [tex]\( Q \)[/tex] increases from 5 to 10.
### Part (b): Finding the Maximum Revenue and Corresponding [tex]\( Q \)[/tex]
For [tex]\( 0 \leq Q \leq 5 \)[/tex]:
[tex]\[ TR = 0.2 Q^3 \][/tex]
To find the maximum, take the derivative and set it to zero:
[tex]\[ \frac{d(TR)}{dQ} = 0.6 Q^2 \][/tex]
Setting the derivative to zero:
[tex]\[ 0.6 Q^2 = 0 \implies Q = 0 \][/tex]
_Check boundary [tex]\( Q=5 \)[/tex]_:
[tex]\[ TR(5) = 0.2 \times 5^3 = 25 \][/tex]
For [tex]\( 5 \leq Q \leq 10 \)[/tex]:
[tex]\[ TR = -4 Q^2 + 55 Q - 150 \][/tex]
Take the derivative:
[tex]\[ \frac{d(TR)}{dQ} = -8Q + 55 \][/tex]
Set the derivative to zero and solve for [tex]\( Q \)[/tex]:
[tex]\[ -8Q + 55 = 0 \][/tex]
[tex]\[ 8Q = 55 \][/tex]
[tex]\[ Q = \frac{55}{8} = 6.875 \][/tex]
Evaluate [tex]\( TR \)[/tex] at [tex]\( Q = 6.875 \)[/tex]:
[tex]\[ TR(6.875) = -4 \times (6.875)^2 + 55 \times 6.875 - 150 \][/tex]
[tex]\[ TR(6.875) \approx 36.719 \][/tex]
Compare the [tex]\( TR \)[/tex] values:
- At [tex]\( Q = 0 \)[/tex], [tex]\( TR = 0 \)[/tex]
- At [tex]\( Q = 5 \)[/tex], [tex]\( TR = 25 \)[/tex]
- At [tex]\( Q = 6.875 \)[/tex], [tex]\( TR \approx 36.719 \)[/tex]
- At [tex]\( Q = 10 \)[/tex], [tex]\( TR = 0 \)[/tex]
The maximum revenue is [tex]\( TR \approx 36.719 \)[/tex] at [tex]\( Q = 6.875 \)[/tex].
### Part (c): Maximizing Marginal Revenue (MR)
Marginal Revenue (MR) is the derivative of TR.
For [tex]\( 0 \leq Q \leq 5 \)[/tex]:
[tex]\[ TR = 0.2 Q^3 \][/tex]
[tex]\[ \frac{d(TR)}{dQ} = MR = 0.6 Q^2 \][/tex]
For [tex]\( 5 \leq Q \leq 10 \)[/tex]:
[tex]\[ TR = -4 Q^2 + 55 Q - 150 \][/tex]
[tex]\[ \frac{d(TR)}{dQ} = MR = -8Q + 55 \][/tex]
To find where MR is maximum in each segment:
For [tex]\( 0 \leq Q \leq 5 \)[/tex]:
[tex]\[ MR = 0.6 Q^2 \][/tex]
As [tex]\( Q \)[/tex] increases from 0 to 5, [tex]\( MR \)[/tex] increases since it's a positive quadratic function.
For [tex]\( 5 \leq Q \leq 10 \)[/tex]:
[tex]\[ MR = -8Q + 55 \][/tex]
It's a linear function decreasing with [tex]\( Q \)[/tex]. It reaches maximum at the left boundary:
[tex]\[ Q = 5 \][/tex]
[tex]\[ MR = -8 \times 5 + 55 = 15 \][/tex]
Compare [tex]\( MR \)[/tex] values:
- At [tex]\( Q = 5 \)[/tex] from the second segment: [tex]\( MR = 15 \)[/tex]
- For the first segment, [tex]\( MR \)[/tex] increases with [tex]\( Q \)[/tex], reaching its peak at [tex]\( Q = 5 \)[/tex]:
[tex]\[ MR = 0.6 \times 5^2 = 15 \][/tex]
So, maximum marginal revenue of 15 occurs at [tex]\( Q = 5 \)[/tex].
### Summary:
- (a) We sketched the TR curve based on given functions.
- (b) The maximum revenue [tex]\( TR \approx 36.719 \)[/tex] is achieved at [tex]\( Q = 6.875 \)[/tex].
- (c) The marginal revenue is maximum at [tex]\( Q = 5 \)[/tex] and [tex]\( MR = 15 \)[/tex].
This step-by-step solution covers the graphing, maximum revenue point, and marginal revenue analysis!
### Part (a): Sketching the Total Revenue (TR) Graph
To sketch the TR against [tex]\( Q \)[/tex] on the interval [tex]\( 0 \leq Q \leq 10 \)[/tex], let's plot the given functions:
1. For [tex]\( 0 \leq Q \leq 5 \)[/tex]:
[tex]\[ TR = 0.2 Q^3 \][/tex]
2. For [tex]\( 5 \leq Q \leq 10 \)[/tex]:
[tex]\[ TR = -4 Q^2 + 55 Q - 150 \][/tex]
Let's identify key points:
- At [tex]\( Q = 0 \)[/tex]:
- [tex]\( TR = 0.2 \times 0^3 = 0 \)[/tex]
- At [tex]\( Q = 5 \)[/tex]:
- Using [tex]\( TR = 0.2 Q^3 \)[/tex]:
[tex]\[ TR = 0.2 \times 5^3 = 0.2 \times 125 = 25 \][/tex]
- Using [tex]\( TR = -4Q^2 + 55Q - 150 \)[/tex]:
[tex]\[ TR = -4 \times 5^2 + 55 \times 5 - 150 = -100 + 275 - 150 = 25 \][/tex]
(Both functions yield the same value at [tex]\( Q = 5 \)[/tex], ensuring continuity.)
- At [tex]\( Q = 10 \)[/tex]:
- [tex]\( TR = -4 \times 10^2 + 55 \times 10 - 150 = -400 + 550 - 150 = 0 \)[/tex]
A rough sketch of these segments will show [tex]\( TR \)[/tex] increasing as [tex]\( Q \)[/tex] increases from 0 to 5, reaching a peak, and then decreasing as [tex]\( Q \)[/tex] increases from 5 to 10.
### Part (b): Finding the Maximum Revenue and Corresponding [tex]\( Q \)[/tex]
For [tex]\( 0 \leq Q \leq 5 \)[/tex]:
[tex]\[ TR = 0.2 Q^3 \][/tex]
To find the maximum, take the derivative and set it to zero:
[tex]\[ \frac{d(TR)}{dQ} = 0.6 Q^2 \][/tex]
Setting the derivative to zero:
[tex]\[ 0.6 Q^2 = 0 \implies Q = 0 \][/tex]
_Check boundary [tex]\( Q=5 \)[/tex]_:
[tex]\[ TR(5) = 0.2 \times 5^3 = 25 \][/tex]
For [tex]\( 5 \leq Q \leq 10 \)[/tex]:
[tex]\[ TR = -4 Q^2 + 55 Q - 150 \][/tex]
Take the derivative:
[tex]\[ \frac{d(TR)}{dQ} = -8Q + 55 \][/tex]
Set the derivative to zero and solve for [tex]\( Q \)[/tex]:
[tex]\[ -8Q + 55 = 0 \][/tex]
[tex]\[ 8Q = 55 \][/tex]
[tex]\[ Q = \frac{55}{8} = 6.875 \][/tex]
Evaluate [tex]\( TR \)[/tex] at [tex]\( Q = 6.875 \)[/tex]:
[tex]\[ TR(6.875) = -4 \times (6.875)^2 + 55 \times 6.875 - 150 \][/tex]
[tex]\[ TR(6.875) \approx 36.719 \][/tex]
Compare the [tex]\( TR \)[/tex] values:
- At [tex]\( Q = 0 \)[/tex], [tex]\( TR = 0 \)[/tex]
- At [tex]\( Q = 5 \)[/tex], [tex]\( TR = 25 \)[/tex]
- At [tex]\( Q = 6.875 \)[/tex], [tex]\( TR \approx 36.719 \)[/tex]
- At [tex]\( Q = 10 \)[/tex], [tex]\( TR = 0 \)[/tex]
The maximum revenue is [tex]\( TR \approx 36.719 \)[/tex] at [tex]\( Q = 6.875 \)[/tex].
### Part (c): Maximizing Marginal Revenue (MR)
Marginal Revenue (MR) is the derivative of TR.
For [tex]\( 0 \leq Q \leq 5 \)[/tex]:
[tex]\[ TR = 0.2 Q^3 \][/tex]
[tex]\[ \frac{d(TR)}{dQ} = MR = 0.6 Q^2 \][/tex]
For [tex]\( 5 \leq Q \leq 10 \)[/tex]:
[tex]\[ TR = -4 Q^2 + 55 Q - 150 \][/tex]
[tex]\[ \frac{d(TR)}{dQ} = MR = -8Q + 55 \][/tex]
To find where MR is maximum in each segment:
For [tex]\( 0 \leq Q \leq 5 \)[/tex]:
[tex]\[ MR = 0.6 Q^2 \][/tex]
As [tex]\( Q \)[/tex] increases from 0 to 5, [tex]\( MR \)[/tex] increases since it's a positive quadratic function.
For [tex]\( 5 \leq Q \leq 10 \)[/tex]:
[tex]\[ MR = -8Q + 55 \][/tex]
It's a linear function decreasing with [tex]\( Q \)[/tex]. It reaches maximum at the left boundary:
[tex]\[ Q = 5 \][/tex]
[tex]\[ MR = -8 \times 5 + 55 = 15 \][/tex]
Compare [tex]\( MR \)[/tex] values:
- At [tex]\( Q = 5 \)[/tex] from the second segment: [tex]\( MR = 15 \)[/tex]
- For the first segment, [tex]\( MR \)[/tex] increases with [tex]\( Q \)[/tex], reaching its peak at [tex]\( Q = 5 \)[/tex]:
[tex]\[ MR = 0.6 \times 5^2 = 15 \][/tex]
So, maximum marginal revenue of 15 occurs at [tex]\( Q = 5 \)[/tex].
### Summary:
- (a) We sketched the TR curve based on given functions.
- (b) The maximum revenue [tex]\( TR \approx 36.719 \)[/tex] is achieved at [tex]\( Q = 6.875 \)[/tex].
- (c) The marginal revenue is maximum at [tex]\( Q = 5 \)[/tex] and [tex]\( MR = 15 \)[/tex].
This step-by-step solution covers the graphing, maximum revenue point, and marginal revenue analysis!
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.