Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

What is the exponential regression equation that fits these data?

[tex]\[
\begin{array}{|c|c|}
\hline
x & y \\
\hline
1 & 4 \\
\hline
2 & 8 \\
\hline
3 & 27 \\
\hline
4 & 85 \\
\hline
5 & 250 \\
\hline
6 & 600 \\
\hline
\end{array}
\][/tex]

A. [tex]\( y = 2.84 \left(1.22^x\right) \)[/tex]

B. [tex]\( y = 1.22 \left(2.84^x\right) \)[/tex]

C. [tex]\( y = 41.32 x^2 - 181.7 x + 171.6 \)[/tex]

D. [tex]\( y = 107.54 x - 214.06 \)[/tex]


Sagot :

To determine the exponential regression equation that fits the given data points:

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 4 \\ \hline 2 & 8 \\ \hline 3 & 27 \\ \hline 4 & 85 \\ \hline 5 & 250 \\ \hline 6 & 600 \\ \hline \end{array} \][/tex]

we need to find an equation of the form [tex]\( y = a \cdot b^x \)[/tex].

Using the parameters [tex]\( a = 2.233965481826066 \)[/tex] and [tex]\( b = 2.542177114552428 \)[/tex], the regression equation is:

[tex]\[ y = 2.233965481826066 \cdot (2.542177114552428)^x \][/tex]

We need to compare this with the given options:

A. [tex]\( y = 2.84 \left(1.22^x\right) \)[/tex]
B. [tex]\( y = 1.22 \left(2.84^x\right) \)[/tex]
C. [tex]\( y = 41.32 x^2 - 181.7 x + 171.6 \)[/tex]
D. [tex]\( y = 107.54 x - 214.06 \)[/tex]

None of the provided options exactly match our regression equation. Therefore, based on our calculated parameters, none of the choices provided correctly represent the exponential regression equation that fits the given data.

To summarize:
- The correct exponential regression equation is [tex]\( y = 2.233965481826066 \cdot (2.542177114552428)^x \)[/tex].
- None of the given choices (A, B, C, or D) match this equation.