Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Solve for [tex]\( x \)[/tex]:

[tex]\[ 5x + x \ \textless \ 2x + 6 \leq 12 \][/tex]


Sagot :

Sure! Let's solve the given compound inequality step-by-step:

[tex]\[ 58 + x < 2x + 6 \leq 12 \][/tex]

To solve this, we need to break it down into two separate inequalities and then find the intersection of the solutions for each inequality.

### Step 1: Solve [tex]\( 58 + x < 2x + 6 \)[/tex]

1. Subtract [tex]\( x \)[/tex] from both sides:
[tex]\[ 58 < x + 6 \][/tex]

2. Subtract 6 from both sides:
[tex]\[ 52 < x \][/tex]

This simplifies to:
[tex]\[ x > 52 \][/tex]

### Step 2: Solve [tex]\( 2x + 6 \leq 12 \)[/tex]

1. Subtract 6 from both sides:
[tex]\[ 2x \leq 6 \][/tex]

2. Divide both sides by 2:
[tex]\[ x \leq 3 \][/tex]

### Step 3: Combine the solutions

From the above steps, we have two results:
[tex]\[ x > 52 \][/tex]
[tex]\[ x \leq 3 \][/tex]

Now, we need to find the values of [tex]\( x \)[/tex] that satisfy both inequalities simultaneously.

### Step 4: Find the intersection of the two inequalities

1. The inequality [tex]\( x > 52 \)[/tex] means [tex]\( x \)[/tex] must be greater than 52.
2. The inequality [tex]\( x \leq 3 \)[/tex] means [tex]\( x \)[/tex] must be less than or equal to 3.

However, there's no number [tex]\( x \)[/tex] that can be both greater than 52 and less than or equal to 3 at the same time.

### Conclusion

There is no value of [tex]\( x \)[/tex] that satisfies both inequalities together. Therefore, the compound inequality has no solution in the real numbers.

The final answer is:
[tex]\[ \text{No solution} \][/tex]