Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's analyze this question step-by-step:
1. State the Hypotheses:
- Null Hypothesis ([tex]\(H_0\)[/tex]): The true mean age of millionaires today is 62 years (i.e., [tex]\(\mu = 62\)[/tex]).
- Alternative Hypothesis ([tex]\(H_1\)[/tex]): The true mean age of millionaires today is less than 62 years (i.e., [tex]\(\mu < 62\)[/tex]).
2. Given Data:
- Sample size ([tex]\(n\)[/tex]): 50
- Sample mean ([tex]\(\bar{x}\)[/tex]): 51 years
- Sample standard deviation ([tex]\(s_x\)[/tex]): 10.2 years
- Population mean 10 years ago ([tex]\(\mu_0\)[/tex]): 62 years
- Significance level ([tex]\(\alpha\)[/tex]): 0.01
3. Formulate the Test Statistic:
We will use a one-sample t-test since the population standard deviation is unknown and the sample size is relatively small.
The test statistic for the t-test is calculated using the formula:
[tex]\[ t = \frac{\bar{x} - \mu_0}{\frac{s_x}{\sqrt{n}}} \][/tex]
Plugging in the values:
[tex]\[ t = \frac{51 - 62}{\frac{10.2}{\sqrt{50}}} \][/tex]
From the given results, the test statistic is [tex]\(-7.626\)[/tex].
4. Determine the Critical Value:
The critical value for a left-tailed t-test at [tex]\(\alpha = 0.01\)[/tex] with [tex]\(df = n - 1 = 50 - 1 = 49\)[/tex] degrees of freedom is obtained from t-distribution tables.
From the given results, the critical value is [tex]\(-2.405\)[/tex].
5. Decision Rule:
Compare the test statistic with the critical value:
- If [tex]\( t \)[/tex] is less than the critical value, we reject the null hypothesis [tex]\(H_0\)[/tex].
- If [tex]\( t \)[/tex] is greater than or equal to the critical value, we fail to reject the null hypothesis [tex]\(H_0\)[/tex].
6. Conclusion:
In this case, the test statistic [tex]\( t = -7.626 \)[/tex] is less than the critical value [tex]\( -2.405 \)[/tex].
Therefore, we reject the null hypothesis [tex]\(H_0\)[/tex].
This provides strong evidence at the [tex]\(\alpha = 0.01\)[/tex] significance level to conclude that the true mean age of millionaires in the US is less than 62 years.
1. State the Hypotheses:
- Null Hypothesis ([tex]\(H_0\)[/tex]): The true mean age of millionaires today is 62 years (i.e., [tex]\(\mu = 62\)[/tex]).
- Alternative Hypothesis ([tex]\(H_1\)[/tex]): The true mean age of millionaires today is less than 62 years (i.e., [tex]\(\mu < 62\)[/tex]).
2. Given Data:
- Sample size ([tex]\(n\)[/tex]): 50
- Sample mean ([tex]\(\bar{x}\)[/tex]): 51 years
- Sample standard deviation ([tex]\(s_x\)[/tex]): 10.2 years
- Population mean 10 years ago ([tex]\(\mu_0\)[/tex]): 62 years
- Significance level ([tex]\(\alpha\)[/tex]): 0.01
3. Formulate the Test Statistic:
We will use a one-sample t-test since the population standard deviation is unknown and the sample size is relatively small.
The test statistic for the t-test is calculated using the formula:
[tex]\[ t = \frac{\bar{x} - \mu_0}{\frac{s_x}{\sqrt{n}}} \][/tex]
Plugging in the values:
[tex]\[ t = \frac{51 - 62}{\frac{10.2}{\sqrt{50}}} \][/tex]
From the given results, the test statistic is [tex]\(-7.626\)[/tex].
4. Determine the Critical Value:
The critical value for a left-tailed t-test at [tex]\(\alpha = 0.01\)[/tex] with [tex]\(df = n - 1 = 50 - 1 = 49\)[/tex] degrees of freedom is obtained from t-distribution tables.
From the given results, the critical value is [tex]\(-2.405\)[/tex].
5. Decision Rule:
Compare the test statistic with the critical value:
- If [tex]\( t \)[/tex] is less than the critical value, we reject the null hypothesis [tex]\(H_0\)[/tex].
- If [tex]\( t \)[/tex] is greater than or equal to the critical value, we fail to reject the null hypothesis [tex]\(H_0\)[/tex].
6. Conclusion:
In this case, the test statistic [tex]\( t = -7.626 \)[/tex] is less than the critical value [tex]\( -2.405 \)[/tex].
Therefore, we reject the null hypothesis [tex]\(H_0\)[/tex].
This provides strong evidence at the [tex]\(\alpha = 0.01\)[/tex] significance level to conclude that the true mean age of millionaires in the US is less than 62 years.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.