Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! To find the coordinates of the point that is [tex]\(\frac{1}{3}\)[/tex] of the way from point [tex]\(A(-7, -2)\)[/tex] to point [tex]\(B(2, 4)\)[/tex], we can follow these steps:
1. Determine the horizontal and vertical distances between the points [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
- Horizontal distance: [tex]\(B_x - A_x = 2 - (-7) = 2 + 7 = 9\)[/tex]
- Vertical distance: [tex]\(B_y - A_y = 4 - (-2) = 4 + 2 = 6\)[/tex]
2. Calculate [tex]\(\frac{1}{3}\)[/tex] of these distances:
- [tex]\(\frac{1}{3}\)[/tex] of the horizontal distance: [tex]\(\frac{1}{3} \cdot 9 = 3\)[/tex]
- [tex]\(\frac{1}{3}\)[/tex] of the vertical distance: [tex]\(\frac{1}{3} \cdot 6 = 2\)[/tex]
3. Add these distances to the coordinates of point [tex]\(A\)[/tex] to find the desired point:
- Horizontal coordinate: [tex]\(A_x + 3 = -7 + 3 = -4\)[/tex]
- Vertical coordinate: [tex]\(A_y + 2 = -2 + 2 = 0\)[/tex]
Therefore, the coordinates of the point that is [tex]\(\frac{1}{3}\)[/tex] of the way from [tex]\(A(-7,-2)\)[/tex] to [tex]\(B(2,4)\)[/tex] are [tex]\((-4, 0)\)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{(-4, 0)} \][/tex]
1. Determine the horizontal and vertical distances between the points [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
- Horizontal distance: [tex]\(B_x - A_x = 2 - (-7) = 2 + 7 = 9\)[/tex]
- Vertical distance: [tex]\(B_y - A_y = 4 - (-2) = 4 + 2 = 6\)[/tex]
2. Calculate [tex]\(\frac{1}{3}\)[/tex] of these distances:
- [tex]\(\frac{1}{3}\)[/tex] of the horizontal distance: [tex]\(\frac{1}{3} \cdot 9 = 3\)[/tex]
- [tex]\(\frac{1}{3}\)[/tex] of the vertical distance: [tex]\(\frac{1}{3} \cdot 6 = 2\)[/tex]
3. Add these distances to the coordinates of point [tex]\(A\)[/tex] to find the desired point:
- Horizontal coordinate: [tex]\(A_x + 3 = -7 + 3 = -4\)[/tex]
- Vertical coordinate: [tex]\(A_y + 2 = -2 + 2 = 0\)[/tex]
Therefore, the coordinates of the point that is [tex]\(\frac{1}{3}\)[/tex] of the way from [tex]\(A(-7,-2)\)[/tex] to [tex]\(B(2,4)\)[/tex] are [tex]\((-4, 0)\)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{(-4, 0)} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.