Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the logarithmic equation [tex]\(\log x = 4\)[/tex], we need to convert it to its equivalent exponential form.
The logarithmic equation [tex]\(\log x = 4\)[/tex] is in base 10, which is implicit when the base is not specified. Therefore, we can rewrite it explicitly as [tex]\(\log_{10} x = 4\)[/tex].
To convert this logarithmic equation to an exponential equation, we use the definition of logarithms:
[tex]\[ \log_{b}(x) = y \implies b^y = x \][/tex]
In this case, [tex]\(b = 10\)[/tex], [tex]\(y = 4\)[/tex], and [tex]\(x = x\)[/tex]. Applying the definition:
[tex]\[ \log_{10}(x) = 4 \implies 10^4 = x \][/tex]
So the exponential form of the given logarithmic equation is:
[tex]\[ 10^4 = x \][/tex]
Thus, the correct exponential equation corresponding to [tex]\(\log x = 4\)[/tex] is:
B. [tex]\(10^4 = x\)[/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{B} \][/tex]
The logarithmic equation [tex]\(\log x = 4\)[/tex] is in base 10, which is implicit when the base is not specified. Therefore, we can rewrite it explicitly as [tex]\(\log_{10} x = 4\)[/tex].
To convert this logarithmic equation to an exponential equation, we use the definition of logarithms:
[tex]\[ \log_{b}(x) = y \implies b^y = x \][/tex]
In this case, [tex]\(b = 10\)[/tex], [tex]\(y = 4\)[/tex], and [tex]\(x = x\)[/tex]. Applying the definition:
[tex]\[ \log_{10}(x) = 4 \implies 10^4 = x \][/tex]
So the exponential form of the given logarithmic equation is:
[tex]\[ 10^4 = x \][/tex]
Thus, the correct exponential equation corresponding to [tex]\(\log x = 4\)[/tex] is:
B. [tex]\(10^4 = x\)[/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{B} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.