Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To predict the price of a movie ticket in year 20 using the given regression equation [tex]\( y = 6.94 \cdot (1.02^x) \)[/tex], follow these steps:
1. Identify the given parameters in the regression equation:
[tex]\[ y = 6.94 \cdot (1.02^x) \][/tex]
Here, [tex]\( 6.94 \)[/tex] is the base price in 2007 (year 0), [tex]\( 1.02 \)[/tex] is the growth rate, and [tex]\( x \)[/tex] is the number of years since 2007.
2. Determine the value of [tex]\( x \)[/tex] for year 20:
[tex]\[ x = 20 \][/tex]
This represents the year 2027 because [tex]\( 2007 + 20 = 2027 \)[/tex].
3. Substitute [tex]\( x = 20 \)[/tex] into the regression equation:
[tex]\[ y = 6.94 \cdot (1.02^{20}) \][/tex]
4. Calculate [tex]\( (1.02^{20}) \)[/tex], which is approximately 1.485947:
[tex]\[ 1.02^{20} \approx 1.485947 \][/tex]
5. Multiply this factor by the base price of the ticket:
[tex]\[ y = 6.94 \cdot 1.485947 \approx 10.312474928089783 \][/tex]
6. Round the result to the nearest cent:
[tex]\[ y \approx \$10.31 \][/tex]
Therefore, the best prediction of the price of a movie ticket in year 20 (2027) is [tex]\(\$10.31\)[/tex].
Hence, the correct answer is:
B. [tex]$\$[/tex] 10.31$
1. Identify the given parameters in the regression equation:
[tex]\[ y = 6.94 \cdot (1.02^x) \][/tex]
Here, [tex]\( 6.94 \)[/tex] is the base price in 2007 (year 0), [tex]\( 1.02 \)[/tex] is the growth rate, and [tex]\( x \)[/tex] is the number of years since 2007.
2. Determine the value of [tex]\( x \)[/tex] for year 20:
[tex]\[ x = 20 \][/tex]
This represents the year 2027 because [tex]\( 2007 + 20 = 2027 \)[/tex].
3. Substitute [tex]\( x = 20 \)[/tex] into the regression equation:
[tex]\[ y = 6.94 \cdot (1.02^{20}) \][/tex]
4. Calculate [tex]\( (1.02^{20}) \)[/tex], which is approximately 1.485947:
[tex]\[ 1.02^{20} \approx 1.485947 \][/tex]
5. Multiply this factor by the base price of the ticket:
[tex]\[ y = 6.94 \cdot 1.485947 \approx 10.312474928089783 \][/tex]
6. Round the result to the nearest cent:
[tex]\[ y \approx \$10.31 \][/tex]
Therefore, the best prediction of the price of a movie ticket in year 20 (2027) is [tex]\(\$10.31\)[/tex].
Hence, the correct answer is:
B. [tex]$\$[/tex] 10.31$
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.