At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To predict the price of a movie ticket in year 20 using the given regression equation [tex]\( y = 6.94 \cdot (1.02^x) \)[/tex], follow these steps:
1. Identify the given parameters in the regression equation:
[tex]\[ y = 6.94 \cdot (1.02^x) \][/tex]
Here, [tex]\( 6.94 \)[/tex] is the base price in 2007 (year 0), [tex]\( 1.02 \)[/tex] is the growth rate, and [tex]\( x \)[/tex] is the number of years since 2007.
2. Determine the value of [tex]\( x \)[/tex] for year 20:
[tex]\[ x = 20 \][/tex]
This represents the year 2027 because [tex]\( 2007 + 20 = 2027 \)[/tex].
3. Substitute [tex]\( x = 20 \)[/tex] into the regression equation:
[tex]\[ y = 6.94 \cdot (1.02^{20}) \][/tex]
4. Calculate [tex]\( (1.02^{20}) \)[/tex], which is approximately 1.485947:
[tex]\[ 1.02^{20} \approx 1.485947 \][/tex]
5. Multiply this factor by the base price of the ticket:
[tex]\[ y = 6.94 \cdot 1.485947 \approx 10.312474928089783 \][/tex]
6. Round the result to the nearest cent:
[tex]\[ y \approx \$10.31 \][/tex]
Therefore, the best prediction of the price of a movie ticket in year 20 (2027) is [tex]\(\$10.31\)[/tex].
Hence, the correct answer is:
B. [tex]$\$[/tex] 10.31$
1. Identify the given parameters in the regression equation:
[tex]\[ y = 6.94 \cdot (1.02^x) \][/tex]
Here, [tex]\( 6.94 \)[/tex] is the base price in 2007 (year 0), [tex]\( 1.02 \)[/tex] is the growth rate, and [tex]\( x \)[/tex] is the number of years since 2007.
2. Determine the value of [tex]\( x \)[/tex] for year 20:
[tex]\[ x = 20 \][/tex]
This represents the year 2027 because [tex]\( 2007 + 20 = 2027 \)[/tex].
3. Substitute [tex]\( x = 20 \)[/tex] into the regression equation:
[tex]\[ y = 6.94 \cdot (1.02^{20}) \][/tex]
4. Calculate [tex]\( (1.02^{20}) \)[/tex], which is approximately 1.485947:
[tex]\[ 1.02^{20} \approx 1.485947 \][/tex]
5. Multiply this factor by the base price of the ticket:
[tex]\[ y = 6.94 \cdot 1.485947 \approx 10.312474928089783 \][/tex]
6. Round the result to the nearest cent:
[tex]\[ y \approx \$10.31 \][/tex]
Therefore, the best prediction of the price of a movie ticket in year 20 (2027) is [tex]\(\$10.31\)[/tex].
Hence, the correct answer is:
B. [tex]$\$[/tex] 10.31$
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.