Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let’s solve these equations step-by-step.
### Part (a)
Given the equation:
[tex]\[ 2(5x - 3) = 24 \][/tex]
1. Distribute the 2 across the terms inside the parentheses:
[tex]\[ 2 \cdot 5x - 2 \cdot 3 = 24 \][/tex]
[tex]\[ 10x - 6 = 24 \][/tex]
2. Isolate the variable term (10x) by adding 6 to both sides of the equation:
[tex]\[ 10x - 6 + 6 = 24 + 6 \][/tex]
[tex]\[ 10x = 30 \][/tex]
3. Solve for [tex]\( x \)[/tex] by dividing both sides of the equation by 10:
[tex]\[ x = \frac{30}{10} \][/tex]
[tex]\[ x = 3 \][/tex]
So, the solution for part (a) is:
[tex]\[ x = 3 \][/tex]
### Part (b)
Given the equation:
[tex]\[ 5(2x + 1) = 50 \][/tex]
1. Distribute the 5 across the terms inside the parentheses:
[tex]\[ 5 \cdot 2x + 5 \cdot 1 = 50 \][/tex]
[tex]\[ 10x + 5 = 50 \][/tex]
2. Isolate the variable term (10x) by subtracting 5 from both sides of the equation:
[tex]\[ 10x + 5 - 5 = 50 - 5 \][/tex]
[tex]\[ 10x = 45 \][/tex]
3. Solve for [tex]\( x \)[/tex] by dividing both sides of the equation by 10:
[tex]\[ x = \frac{45}{10} \][/tex]
[tex]\[ x = 4.5 \][/tex]
So, the solution for part (b) is:
[tex]\[ x = 4.5 \][/tex]
Thus, the solutions are:
- For part (a), [tex]\( x = 3 \)[/tex]
- For part (b), [tex]\( x = 4.5 \)[/tex]
### Part (a)
Given the equation:
[tex]\[ 2(5x - 3) = 24 \][/tex]
1. Distribute the 2 across the terms inside the parentheses:
[tex]\[ 2 \cdot 5x - 2 \cdot 3 = 24 \][/tex]
[tex]\[ 10x - 6 = 24 \][/tex]
2. Isolate the variable term (10x) by adding 6 to both sides of the equation:
[tex]\[ 10x - 6 + 6 = 24 + 6 \][/tex]
[tex]\[ 10x = 30 \][/tex]
3. Solve for [tex]\( x \)[/tex] by dividing both sides of the equation by 10:
[tex]\[ x = \frac{30}{10} \][/tex]
[tex]\[ x = 3 \][/tex]
So, the solution for part (a) is:
[tex]\[ x = 3 \][/tex]
### Part (b)
Given the equation:
[tex]\[ 5(2x + 1) = 50 \][/tex]
1. Distribute the 5 across the terms inside the parentheses:
[tex]\[ 5 \cdot 2x + 5 \cdot 1 = 50 \][/tex]
[tex]\[ 10x + 5 = 50 \][/tex]
2. Isolate the variable term (10x) by subtracting 5 from both sides of the equation:
[tex]\[ 10x + 5 - 5 = 50 - 5 \][/tex]
[tex]\[ 10x = 45 \][/tex]
3. Solve for [tex]\( x \)[/tex] by dividing both sides of the equation by 10:
[tex]\[ x = \frac{45}{10} \][/tex]
[tex]\[ x = 4.5 \][/tex]
So, the solution for part (b) is:
[tex]\[ x = 4.5 \][/tex]
Thus, the solutions are:
- For part (a), [tex]\( x = 3 \)[/tex]
- For part (b), [tex]\( x = 4.5 \)[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.