Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let’s solve these equations step-by-step.
### Part (a)
Given the equation:
[tex]\[ 2(5x - 3) = 24 \][/tex]
1. Distribute the 2 across the terms inside the parentheses:
[tex]\[ 2 \cdot 5x - 2 \cdot 3 = 24 \][/tex]
[tex]\[ 10x - 6 = 24 \][/tex]
2. Isolate the variable term (10x) by adding 6 to both sides of the equation:
[tex]\[ 10x - 6 + 6 = 24 + 6 \][/tex]
[tex]\[ 10x = 30 \][/tex]
3. Solve for [tex]\( x \)[/tex] by dividing both sides of the equation by 10:
[tex]\[ x = \frac{30}{10} \][/tex]
[tex]\[ x = 3 \][/tex]
So, the solution for part (a) is:
[tex]\[ x = 3 \][/tex]
### Part (b)
Given the equation:
[tex]\[ 5(2x + 1) = 50 \][/tex]
1. Distribute the 5 across the terms inside the parentheses:
[tex]\[ 5 \cdot 2x + 5 \cdot 1 = 50 \][/tex]
[tex]\[ 10x + 5 = 50 \][/tex]
2. Isolate the variable term (10x) by subtracting 5 from both sides of the equation:
[tex]\[ 10x + 5 - 5 = 50 - 5 \][/tex]
[tex]\[ 10x = 45 \][/tex]
3. Solve for [tex]\( x \)[/tex] by dividing both sides of the equation by 10:
[tex]\[ x = \frac{45}{10} \][/tex]
[tex]\[ x = 4.5 \][/tex]
So, the solution for part (b) is:
[tex]\[ x = 4.5 \][/tex]
Thus, the solutions are:
- For part (a), [tex]\( x = 3 \)[/tex]
- For part (b), [tex]\( x = 4.5 \)[/tex]
### Part (a)
Given the equation:
[tex]\[ 2(5x - 3) = 24 \][/tex]
1. Distribute the 2 across the terms inside the parentheses:
[tex]\[ 2 \cdot 5x - 2 \cdot 3 = 24 \][/tex]
[tex]\[ 10x - 6 = 24 \][/tex]
2. Isolate the variable term (10x) by adding 6 to both sides of the equation:
[tex]\[ 10x - 6 + 6 = 24 + 6 \][/tex]
[tex]\[ 10x = 30 \][/tex]
3. Solve for [tex]\( x \)[/tex] by dividing both sides of the equation by 10:
[tex]\[ x = \frac{30}{10} \][/tex]
[tex]\[ x = 3 \][/tex]
So, the solution for part (a) is:
[tex]\[ x = 3 \][/tex]
### Part (b)
Given the equation:
[tex]\[ 5(2x + 1) = 50 \][/tex]
1. Distribute the 5 across the terms inside the parentheses:
[tex]\[ 5 \cdot 2x + 5 \cdot 1 = 50 \][/tex]
[tex]\[ 10x + 5 = 50 \][/tex]
2. Isolate the variable term (10x) by subtracting 5 from both sides of the equation:
[tex]\[ 10x + 5 - 5 = 50 - 5 \][/tex]
[tex]\[ 10x = 45 \][/tex]
3. Solve for [tex]\( x \)[/tex] by dividing both sides of the equation by 10:
[tex]\[ x = \frac{45}{10} \][/tex]
[tex]\[ x = 4.5 \][/tex]
So, the solution for part (b) is:
[tex]\[ x = 4.5 \][/tex]
Thus, the solutions are:
- For part (a), [tex]\( x = 3 \)[/tex]
- For part (b), [tex]\( x = 4.5 \)[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.