Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine whether being from California and preferring brand B are independent events, we need to check if the probability of being from California and preferring brand B equals the product of the individual probabilities of being from California and preferring brand B. Let us break it down step by step:
1. Calculate [tex]\( P(\text{California}) \)[/tex]:
- The total number of people surveyed is 275.
- The number of people from California is 150.
- Therefore, [tex]\( P(\text{California}) = \frac{150}{275} \approx 0.545 \)[/tex].
2. Calculate [tex]\( P(\text{Brand B}) \)[/tex]:
- The total number of people who prefer Brand B is 99.
- Therefore, [tex]\( P(\text{Brand B}) = \frac{99}{275} \approx 0.36 \)[/tex].
3. Calculate [tex]\( P(\text{California and Brand B}) \)[/tex]:
- The number of people from California who prefer Brand B is 54.
- Therefore, [tex]\( P(\text{California and Brand B}) = \frac{54}{275} \approx 0.196 \)[/tex].
4. Calculate [tex]\( P(\text{California} | \text{Brand B}) \)[/tex]:
- The number of people who prefer Brand B is 99.
- The number of those who are from California and prefer Brand B is 54.
- Therefore, [tex]\( P(\text{California} | \text{Brand B}) = \frac{54}{99} \approx 0.545 \)[/tex].
5. Check for Independence:
- Events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent if and only if [tex]\( P(A \text{ and } B) = P(A) \cdot P(B) \)[/tex].
- Calculate [tex]\( P(\text{California}) \times P(\text{Brand B}) \)[/tex]:
[tex]\[ P(\text{California}) \times P(\text{Brand B}) = 0.545 \times 0.36 \approx 0.196. \][/tex]
- Compare this with [tex]\( P(\text{California and Brand B}) \)[/tex]:
[tex]\[ P(\text{California and Brand B}) \approx 0.196. \][/tex]
- Since [tex]\( P(\text{California}) \times P(\text{Brand B}) \approx P(\text{California and Brand B}) \)[/tex], the events are independent.
Therefore, the correct option is:
A. Yes, they are independent because [tex]\( P(\text{California}) \approx 0.55 \)[/tex] and [tex]\( P(\text{California} | \text{Brand B}) \approx 0.55 \)[/tex].
1. Calculate [tex]\( P(\text{California}) \)[/tex]:
- The total number of people surveyed is 275.
- The number of people from California is 150.
- Therefore, [tex]\( P(\text{California}) = \frac{150}{275} \approx 0.545 \)[/tex].
2. Calculate [tex]\( P(\text{Brand B}) \)[/tex]:
- The total number of people who prefer Brand B is 99.
- Therefore, [tex]\( P(\text{Brand B}) = \frac{99}{275} \approx 0.36 \)[/tex].
3. Calculate [tex]\( P(\text{California and Brand B}) \)[/tex]:
- The number of people from California who prefer Brand B is 54.
- Therefore, [tex]\( P(\text{California and Brand B}) = \frac{54}{275} \approx 0.196 \)[/tex].
4. Calculate [tex]\( P(\text{California} | \text{Brand B}) \)[/tex]:
- The number of people who prefer Brand B is 99.
- The number of those who are from California and prefer Brand B is 54.
- Therefore, [tex]\( P(\text{California} | \text{Brand B}) = \frac{54}{99} \approx 0.545 \)[/tex].
5. Check for Independence:
- Events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent if and only if [tex]\( P(A \text{ and } B) = P(A) \cdot P(B) \)[/tex].
- Calculate [tex]\( P(\text{California}) \times P(\text{Brand B}) \)[/tex]:
[tex]\[ P(\text{California}) \times P(\text{Brand B}) = 0.545 \times 0.36 \approx 0.196. \][/tex]
- Compare this with [tex]\( P(\text{California and Brand B}) \)[/tex]:
[tex]\[ P(\text{California and Brand B}) \approx 0.196. \][/tex]
- Since [tex]\( P(\text{California}) \times P(\text{Brand B}) \approx P(\text{California and Brand B}) \)[/tex], the events are independent.
Therefore, the correct option is:
A. Yes, they are independent because [tex]\( P(\text{California}) \approx 0.55 \)[/tex] and [tex]\( P(\text{California} | \text{Brand B}) \approx 0.55 \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.