Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the domain of the composite function [tex]\( (f \circ g)(x) \)[/tex], we need to consider the domains of both functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex].
1. Find the domain of [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = \sqrt{2x + 4} \][/tex]
For [tex]\( g(x) \)[/tex] to be defined, the expression inside the square root must be non-negative:
[tex]\[ 2x + 4 \geq 0 \][/tex]
Solving this inequality:
[tex]\[ 2x \geq -4 \][/tex]
[tex]\[ x \geq -2 \][/tex]
Thus, the domain of [tex]\( g(x) \)[/tex] is [tex]\( x \geq -2 \)[/tex].
2. Find the domain of [tex]\( f(g(x)) \)[/tex]:
[tex]\[ f(g(x)) = f(\sqrt{2x + 4}) = \frac{1}{7\sqrt{2x + 4} - 14} \][/tex]
For [tex]\( f(g(x)) \)[/tex] to be defined, the denominator must not be zero:
[tex]\[ 7\sqrt{2x + 4} - 14 \neq 0 \][/tex]
Solving for when this is zero:
[tex]\[ 7\sqrt{2x + 4} = 14 \][/tex]
[tex]\[ \sqrt{2x + 4} = 2 \][/tex]
Squaring both sides:
[tex]\[ 2x + 4 = 4 \][/tex]
[tex]\[ 2x = 0 \][/tex]
[tex]\[ x = 0 \][/tex]
Therefore, [tex]\( x = 0 \)[/tex] must be excluded from the domain.
3. Combine the conditions:
The domain of [tex]\( g(x) \)[/tex] is [tex]\( x \geq -2 \)[/tex], but we also have to exclude the value where the denominator of [tex]\( f(g(x)) \)[/tex] becomes zero, which is [tex]\( x = 0 \)[/tex].
Hence, the domain of [tex]\( (f \circ g)(x) \)[/tex] is:
[tex]\[ \text{All real numbers } x \geq -2 \text{ other than 0} \][/tex]
Thus, the correct answer is:
All real numbers [tex]\( x \geq -2 \)[/tex] other than 0.
1. Find the domain of [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = \sqrt{2x + 4} \][/tex]
For [tex]\( g(x) \)[/tex] to be defined, the expression inside the square root must be non-negative:
[tex]\[ 2x + 4 \geq 0 \][/tex]
Solving this inequality:
[tex]\[ 2x \geq -4 \][/tex]
[tex]\[ x \geq -2 \][/tex]
Thus, the domain of [tex]\( g(x) \)[/tex] is [tex]\( x \geq -2 \)[/tex].
2. Find the domain of [tex]\( f(g(x)) \)[/tex]:
[tex]\[ f(g(x)) = f(\sqrt{2x + 4}) = \frac{1}{7\sqrt{2x + 4} - 14} \][/tex]
For [tex]\( f(g(x)) \)[/tex] to be defined, the denominator must not be zero:
[tex]\[ 7\sqrt{2x + 4} - 14 \neq 0 \][/tex]
Solving for when this is zero:
[tex]\[ 7\sqrt{2x + 4} = 14 \][/tex]
[tex]\[ \sqrt{2x + 4} = 2 \][/tex]
Squaring both sides:
[tex]\[ 2x + 4 = 4 \][/tex]
[tex]\[ 2x = 0 \][/tex]
[tex]\[ x = 0 \][/tex]
Therefore, [tex]\( x = 0 \)[/tex] must be excluded from the domain.
3. Combine the conditions:
The domain of [tex]\( g(x) \)[/tex] is [tex]\( x \geq -2 \)[/tex], but we also have to exclude the value where the denominator of [tex]\( f(g(x)) \)[/tex] becomes zero, which is [tex]\( x = 0 \)[/tex].
Hence, the domain of [tex]\( (f \circ g)(x) \)[/tex] is:
[tex]\[ \text{All real numbers } x \geq -2 \text{ other than 0} \][/tex]
Thus, the correct answer is:
All real numbers [tex]\( x \geq -2 \)[/tex] other than 0.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.