Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the domain of the composite function [tex]\((f \circ g)(x)\)[/tex], we need to determine where both functions are defined and where the composite function itself is defined. Let's break this problem into steps.
1. Identify the domain of [tex]\(g(x)\)[/tex]:
The function [tex]\(g(x) = \frac{1}{-6x + 5}\)[/tex] is defined for all [tex]\(x\)[/tex] except where the denominator is zero. Set the denominator equal to zero and solve for [tex]\(x\)[/tex]:
[tex]\[ -6x + 5 = 0 \implies x = \frac{5}{6} \][/tex]
Therefore, [tex]\(g(x)\)[/tex] is defined for all [tex]\(x \neq \frac{5}{6}\)[/tex].
2. Identify the domain of [tex]\(f(g(x))\)[/tex]:
The function [tex]\(f(x) = \frac{1}{-10x - 7}\)[/tex] requires that [tex]\(x \neq -\frac{7}{10}\)[/tex] to be defined. Therefore, [tex]\(f\)[/tex] is defined for all [tex]\(x \neq -\frac{7}{10}\)[/tex]. In our case, we need this to [tex]\(f(g(x))\)[/tex].
To find where [tex]\(f(g(x))\)[/tex] is defined, we substitute [tex]\(g(x)\)[/tex] into [tex]\(f(x)\)[/tex]:
[tex]\[ f(g(x)) = f\left( \frac{1}{-6x + 5} \right) = \frac{1}{-10 \left( \frac{1}{-6x + 5} \right) - 7} \][/tex]
3. Determine when [tex]\(f(g(x))\)[/tex] is undefined:
The function [tex]\(f(g(x))\)[/tex] becomes undefined when its denominator is zero:
[tex]\[ -10 \left( \frac{1}{-6x + 5} \right) - 7 = 0 \][/tex]
Simplify inside the denominator:
[tex]\[ - \frac{10}{-6x + 5} - 7 = 0 \][/tex]
Rearrange to solve for [tex]\(x\)[/tex]:
[tex]\[ - \frac{10}{-6x + 5} = 7 \implies \frac{10}{6x - 5} = 7 \implies 10 = 7(6x - 5) \implies 10 = 42x - 35 \implies 42x = 45 \implies x = \frac{45}{42} = \frac{15}{14} \][/tex]
Therefore, the domain of the composite function [tex]\((f \circ g)(x)\)[/tex] is all real numbers except where the original [tex]\(g(x)\)[/tex] or the intermediate steps of [tex]\(f(g(x))\)[/tex] become undefined.
Given the calculations:
- [tex]\(g(x)\)[/tex] is undefined at [tex]\(x = \frac{5}{6}}. - \(f(g(x))\)[/tex] is undefined at [tex]\(x = \frac{15}{14}}. Thus, the domain of \((f \circ g)(x)\)[/tex] is all real numbers except [tex]\(x = \frac{5}{6}\)[/tex] and [tex]\(x = \frac{15}{14}\)[/tex].
The correct answer is:
All real numbers except [tex]\(\frac{5}{6}\)[/tex] and [tex]\(\frac{15}{14} \)[/tex].
Therefore, the correct option is:
#### All real numbers except [tex]\(\frac{5}{6}\)[/tex] and [tex]\(\frac{15}{14}\)[/tex].
1. Identify the domain of [tex]\(g(x)\)[/tex]:
The function [tex]\(g(x) = \frac{1}{-6x + 5}\)[/tex] is defined for all [tex]\(x\)[/tex] except where the denominator is zero. Set the denominator equal to zero and solve for [tex]\(x\)[/tex]:
[tex]\[ -6x + 5 = 0 \implies x = \frac{5}{6} \][/tex]
Therefore, [tex]\(g(x)\)[/tex] is defined for all [tex]\(x \neq \frac{5}{6}\)[/tex].
2. Identify the domain of [tex]\(f(g(x))\)[/tex]:
The function [tex]\(f(x) = \frac{1}{-10x - 7}\)[/tex] requires that [tex]\(x \neq -\frac{7}{10}\)[/tex] to be defined. Therefore, [tex]\(f\)[/tex] is defined for all [tex]\(x \neq -\frac{7}{10}\)[/tex]. In our case, we need this to [tex]\(f(g(x))\)[/tex].
To find where [tex]\(f(g(x))\)[/tex] is defined, we substitute [tex]\(g(x)\)[/tex] into [tex]\(f(x)\)[/tex]:
[tex]\[ f(g(x)) = f\left( \frac{1}{-6x + 5} \right) = \frac{1}{-10 \left( \frac{1}{-6x + 5} \right) - 7} \][/tex]
3. Determine when [tex]\(f(g(x))\)[/tex] is undefined:
The function [tex]\(f(g(x))\)[/tex] becomes undefined when its denominator is zero:
[tex]\[ -10 \left( \frac{1}{-6x + 5} \right) - 7 = 0 \][/tex]
Simplify inside the denominator:
[tex]\[ - \frac{10}{-6x + 5} - 7 = 0 \][/tex]
Rearrange to solve for [tex]\(x\)[/tex]:
[tex]\[ - \frac{10}{-6x + 5} = 7 \implies \frac{10}{6x - 5} = 7 \implies 10 = 7(6x - 5) \implies 10 = 42x - 35 \implies 42x = 45 \implies x = \frac{45}{42} = \frac{15}{14} \][/tex]
Therefore, the domain of the composite function [tex]\((f \circ g)(x)\)[/tex] is all real numbers except where the original [tex]\(g(x)\)[/tex] or the intermediate steps of [tex]\(f(g(x))\)[/tex] become undefined.
Given the calculations:
- [tex]\(g(x)\)[/tex] is undefined at [tex]\(x = \frac{5}{6}}. - \(f(g(x))\)[/tex] is undefined at [tex]\(x = \frac{15}{14}}. Thus, the domain of \((f \circ g)(x)\)[/tex] is all real numbers except [tex]\(x = \frac{5}{6}\)[/tex] and [tex]\(x = \frac{15}{14}\)[/tex].
The correct answer is:
All real numbers except [tex]\(\frac{5}{6}\)[/tex] and [tex]\(\frac{15}{14} \)[/tex].
Therefore, the correct option is:
#### All real numbers except [tex]\(\frac{5}{6}\)[/tex] and [tex]\(\frac{15}{14}\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.