Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's analyze the given lines and determine their relationship based on their slopes.
We start with the given equations of the lines:
[tex]\[ \begin{array}{l} 6x - 2y = -2 \\ y = 3x + 12 \end{array} \][/tex]
Step 1: Convert the first equation into slope-intercept form (y = mx + b)
First, we solve the equation [tex]\(6x - 2y = -2\)[/tex] for [tex]\(y\)[/tex]:
1. Isolate [tex]\(y\)[/tex] on one side:
[tex]\[ -2y = -6x - 2 \][/tex]
2. Divide by [tex]\(-2\)[/tex]:
[tex]\[ y = 3x + 1 \][/tex]
So, the slope-intercept form of the first equation is:
[tex]\[ y = 3x + 1 \][/tex]
Step 2: Identify the slopes of both lines
From the slope-intercept forms:
1. The first line is [tex]\(y = 3x + 1\)[/tex], so the slope [tex]\((m_1)\)[/tex] is [tex]\(3\)[/tex].
2. The second line is [tex]\(y = 3x + 12\)[/tex], so the slope [tex]\((m_2)\)[/tex] is [tex]\(3\)[/tex].
Step 3: Determine the relationship based on slopes
We compare the slopes:
1. If the slopes are equal [tex]\((m_1 = m_2)\)[/tex], the lines are parallel.
2. If the product of the slopes is [tex]\(-1\)[/tex] [tex]\((m_1 \cdot m_2 = -1)\)[/tex], the lines are perpendicular.
3. Otherwise, the lines are neither parallel nor perpendicular.
Since [tex]\(m_1 = 3\)[/tex] and [tex]\(m_2 = 3\)[/tex]:
[tex]\[ m_1 = m_2 = 3 \][/tex]
Therefore, the lines are parallel.
Now, we will select the correct answer from each drop-down menu based on this information:
1. The relationship of their slopes is:
[tex]\[ \text{equal} \][/tex]
2. Since the slopes are equal, the lines are:
[tex]\[ \text{parallel} \][/tex]
So, putting it all together:
The relationship of their slopes is equal, so the lines are parallel.
We start with the given equations of the lines:
[tex]\[ \begin{array}{l} 6x - 2y = -2 \\ y = 3x + 12 \end{array} \][/tex]
Step 1: Convert the first equation into slope-intercept form (y = mx + b)
First, we solve the equation [tex]\(6x - 2y = -2\)[/tex] for [tex]\(y\)[/tex]:
1. Isolate [tex]\(y\)[/tex] on one side:
[tex]\[ -2y = -6x - 2 \][/tex]
2. Divide by [tex]\(-2\)[/tex]:
[tex]\[ y = 3x + 1 \][/tex]
So, the slope-intercept form of the first equation is:
[tex]\[ y = 3x + 1 \][/tex]
Step 2: Identify the slopes of both lines
From the slope-intercept forms:
1. The first line is [tex]\(y = 3x + 1\)[/tex], so the slope [tex]\((m_1)\)[/tex] is [tex]\(3\)[/tex].
2. The second line is [tex]\(y = 3x + 12\)[/tex], so the slope [tex]\((m_2)\)[/tex] is [tex]\(3\)[/tex].
Step 3: Determine the relationship based on slopes
We compare the slopes:
1. If the slopes are equal [tex]\((m_1 = m_2)\)[/tex], the lines are parallel.
2. If the product of the slopes is [tex]\(-1\)[/tex] [tex]\((m_1 \cdot m_2 = -1)\)[/tex], the lines are perpendicular.
3. Otherwise, the lines are neither parallel nor perpendicular.
Since [tex]\(m_1 = 3\)[/tex] and [tex]\(m_2 = 3\)[/tex]:
[tex]\[ m_1 = m_2 = 3 \][/tex]
Therefore, the lines are parallel.
Now, we will select the correct answer from each drop-down menu based on this information:
1. The relationship of their slopes is:
[tex]\[ \text{equal} \][/tex]
2. Since the slopes are equal, the lines are:
[tex]\[ \text{parallel} \][/tex]
So, putting it all together:
The relationship of their slopes is equal, so the lines are parallel.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.