Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's analyze the given lines and determine their relationship based on their slopes.
We start with the given equations of the lines:
[tex]\[ \begin{array}{l} 6x - 2y = -2 \\ y = 3x + 12 \end{array} \][/tex]
Step 1: Convert the first equation into slope-intercept form (y = mx + b)
First, we solve the equation [tex]\(6x - 2y = -2\)[/tex] for [tex]\(y\)[/tex]:
1. Isolate [tex]\(y\)[/tex] on one side:
[tex]\[ -2y = -6x - 2 \][/tex]
2. Divide by [tex]\(-2\)[/tex]:
[tex]\[ y = 3x + 1 \][/tex]
So, the slope-intercept form of the first equation is:
[tex]\[ y = 3x + 1 \][/tex]
Step 2: Identify the slopes of both lines
From the slope-intercept forms:
1. The first line is [tex]\(y = 3x + 1\)[/tex], so the slope [tex]\((m_1)\)[/tex] is [tex]\(3\)[/tex].
2. The second line is [tex]\(y = 3x + 12\)[/tex], so the slope [tex]\((m_2)\)[/tex] is [tex]\(3\)[/tex].
Step 3: Determine the relationship based on slopes
We compare the slopes:
1. If the slopes are equal [tex]\((m_1 = m_2)\)[/tex], the lines are parallel.
2. If the product of the slopes is [tex]\(-1\)[/tex] [tex]\((m_1 \cdot m_2 = -1)\)[/tex], the lines are perpendicular.
3. Otherwise, the lines are neither parallel nor perpendicular.
Since [tex]\(m_1 = 3\)[/tex] and [tex]\(m_2 = 3\)[/tex]:
[tex]\[ m_1 = m_2 = 3 \][/tex]
Therefore, the lines are parallel.
Now, we will select the correct answer from each drop-down menu based on this information:
1. The relationship of their slopes is:
[tex]\[ \text{equal} \][/tex]
2. Since the slopes are equal, the lines are:
[tex]\[ \text{parallel} \][/tex]
So, putting it all together:
The relationship of their slopes is equal, so the lines are parallel.
We start with the given equations of the lines:
[tex]\[ \begin{array}{l} 6x - 2y = -2 \\ y = 3x + 12 \end{array} \][/tex]
Step 1: Convert the first equation into slope-intercept form (y = mx + b)
First, we solve the equation [tex]\(6x - 2y = -2\)[/tex] for [tex]\(y\)[/tex]:
1. Isolate [tex]\(y\)[/tex] on one side:
[tex]\[ -2y = -6x - 2 \][/tex]
2. Divide by [tex]\(-2\)[/tex]:
[tex]\[ y = 3x + 1 \][/tex]
So, the slope-intercept form of the first equation is:
[tex]\[ y = 3x + 1 \][/tex]
Step 2: Identify the slopes of both lines
From the slope-intercept forms:
1. The first line is [tex]\(y = 3x + 1\)[/tex], so the slope [tex]\((m_1)\)[/tex] is [tex]\(3\)[/tex].
2. The second line is [tex]\(y = 3x + 12\)[/tex], so the slope [tex]\((m_2)\)[/tex] is [tex]\(3\)[/tex].
Step 3: Determine the relationship based on slopes
We compare the slopes:
1. If the slopes are equal [tex]\((m_1 = m_2)\)[/tex], the lines are parallel.
2. If the product of the slopes is [tex]\(-1\)[/tex] [tex]\((m_1 \cdot m_2 = -1)\)[/tex], the lines are perpendicular.
3. Otherwise, the lines are neither parallel nor perpendicular.
Since [tex]\(m_1 = 3\)[/tex] and [tex]\(m_2 = 3\)[/tex]:
[tex]\[ m_1 = m_2 = 3 \][/tex]
Therefore, the lines are parallel.
Now, we will select the correct answer from each drop-down menu based on this information:
1. The relationship of their slopes is:
[tex]\[ \text{equal} \][/tex]
2. Since the slopes are equal, the lines are:
[tex]\[ \text{parallel} \][/tex]
So, putting it all together:
The relationship of their slopes is equal, so the lines are parallel.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.