Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine how many solutions exist for the given system of equations:
1. [tex]\( y = 7x - 3 \)[/tex]
2. [tex]\(-14x + 2y = -3\)[/tex]
We will analyze the relationship between these two equations to see if they intersect at any point, which would represent a solution to the system.
Step 1: Rewrite the equations, if necessary, to easily compare them.
The first equation is already in slope-intercept form:
[tex]\[ y = 7x - 3 \][/tex]
The second equation is:
[tex]\[ -14x + 2y = -3 \][/tex]
Step 2: Substitute the expression for [tex]\( y \)[/tex] from the first equation into the second equation.
Substituting [tex]\( y = 7x - 3 \)[/tex] into [tex]\(-14x + 2y = -3\)[/tex]:
[tex]\[ -14x + 2(7x - 3) = -3 \][/tex]
Step 3: Simplify the substituted equation.
Distribute the 2 inside the parentheses:
[tex]\[ -14x + 14x - 6 = -3 \][/tex]
Combine the [tex]\( x \)[/tex] terms:
[tex]\[ 0x - 6 = -3 \][/tex]
[tex]\[ -6 = -3 \][/tex]
Step 4: Determine the validity of the resulting equation.
The equation [tex]\(-6 = -3\)[/tex] is a contradiction. This statement is not true and indicates that there is no value of [tex]\( x \)[/tex] that can satisfy both original equations simultaneously.
Conclusion:
Since the substitution resulted in a contradiction, there are no solutions to the system of equations. Therefore, the system of equations has:
0 solutions.
1. [tex]\( y = 7x - 3 \)[/tex]
2. [tex]\(-14x + 2y = -3\)[/tex]
We will analyze the relationship between these two equations to see if they intersect at any point, which would represent a solution to the system.
Step 1: Rewrite the equations, if necessary, to easily compare them.
The first equation is already in slope-intercept form:
[tex]\[ y = 7x - 3 \][/tex]
The second equation is:
[tex]\[ -14x + 2y = -3 \][/tex]
Step 2: Substitute the expression for [tex]\( y \)[/tex] from the first equation into the second equation.
Substituting [tex]\( y = 7x - 3 \)[/tex] into [tex]\(-14x + 2y = -3\)[/tex]:
[tex]\[ -14x + 2(7x - 3) = -3 \][/tex]
Step 3: Simplify the substituted equation.
Distribute the 2 inside the parentheses:
[tex]\[ -14x + 14x - 6 = -3 \][/tex]
Combine the [tex]\( x \)[/tex] terms:
[tex]\[ 0x - 6 = -3 \][/tex]
[tex]\[ -6 = -3 \][/tex]
Step 4: Determine the validity of the resulting equation.
The equation [tex]\(-6 = -3\)[/tex] is a contradiction. This statement is not true and indicates that there is no value of [tex]\( x \)[/tex] that can satisfy both original equations simultaneously.
Conclusion:
Since the substitution resulted in a contradiction, there are no solutions to the system of equations. Therefore, the system of equations has:
0 solutions.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.