Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Solve the inequality:
[tex]\(6x + 5 + 2(4x + 1) \ \textgreater \ 6x + 9\)[/tex]


Sagot :

To solve the inequality [tex]\(6x + 5 + 2(4x + 1) > 6x + 9\)[/tex], follow these steps:

1. Expand and Simplify the Left Side:
[tex]\[ 6x + 5 + 2(4x + 1) \][/tex]
First, distribute the 2 inside the parentheses:
[tex]\[ 2(4x + 1) = 8x + 2 \][/tex]
Now, substitute this back into the inequality:
[tex]\[ 6x + 5 + 8x + 2 > 6x + 9 \][/tex]

2. Combine Like Terms on the Left Side:
[tex]\[ 6x + 8x + 5 + 2 > 6x + 9 \][/tex]
Simplify:
[tex]\[ 14x + 7 > 6x + 9 \][/tex]

3. Isolate the variable [tex]\(x\)[/tex]:
First, subtract [tex]\(6x\)[/tex] from both sides to remove the [tex]\(x\)[/tex] term from the right side:
[tex]\[ 14x - 6x + 7 > 6x - 6x + 9 \][/tex]
Simplify:
[tex]\[ 8x + 7 > 9 \][/tex]

4. Subtract 7 from Both Sides:
[tex]\[ 8x + 7 - 7 > 9 - 7 \][/tex]
Simplify:
[tex]\[ 8x > 2 \][/tex]

5. Divide by 8:
[tex]\[ \frac{8x}{8} > \frac{2}{8} \][/tex]
Simplify:
[tex]\[ x > \frac{1}{4} \][/tex]

Thus, the solution to the inequality [tex]\(6x + 5 + 2(4x + 1) > 6x + 9\)[/tex] is:

[tex]\[ x > \frac{1}{4} \][/tex]

In interval notation, this solution can be expressed as:

[tex]\[ \left( \frac{1}{4}, \infty \right) \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.