Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the inequality [tex]\(6x + 5 + 2(4x + 1) > 6x + 9\)[/tex], follow these steps:
1. Expand and Simplify the Left Side:
[tex]\[ 6x + 5 + 2(4x + 1) \][/tex]
First, distribute the 2 inside the parentheses:
[tex]\[ 2(4x + 1) = 8x + 2 \][/tex]
Now, substitute this back into the inequality:
[tex]\[ 6x + 5 + 8x + 2 > 6x + 9 \][/tex]
2. Combine Like Terms on the Left Side:
[tex]\[ 6x + 8x + 5 + 2 > 6x + 9 \][/tex]
Simplify:
[tex]\[ 14x + 7 > 6x + 9 \][/tex]
3. Isolate the variable [tex]\(x\)[/tex]:
First, subtract [tex]\(6x\)[/tex] from both sides to remove the [tex]\(x\)[/tex] term from the right side:
[tex]\[ 14x - 6x + 7 > 6x - 6x + 9 \][/tex]
Simplify:
[tex]\[ 8x + 7 > 9 \][/tex]
4. Subtract 7 from Both Sides:
[tex]\[ 8x + 7 - 7 > 9 - 7 \][/tex]
Simplify:
[tex]\[ 8x > 2 \][/tex]
5. Divide by 8:
[tex]\[ \frac{8x}{8} > \frac{2}{8} \][/tex]
Simplify:
[tex]\[ x > \frac{1}{4} \][/tex]
Thus, the solution to the inequality [tex]\(6x + 5 + 2(4x + 1) > 6x + 9\)[/tex] is:
[tex]\[ x > \frac{1}{4} \][/tex]
In interval notation, this solution can be expressed as:
[tex]\[ \left( \frac{1}{4}, \infty \right) \][/tex]
1. Expand and Simplify the Left Side:
[tex]\[ 6x + 5 + 2(4x + 1) \][/tex]
First, distribute the 2 inside the parentheses:
[tex]\[ 2(4x + 1) = 8x + 2 \][/tex]
Now, substitute this back into the inequality:
[tex]\[ 6x + 5 + 8x + 2 > 6x + 9 \][/tex]
2. Combine Like Terms on the Left Side:
[tex]\[ 6x + 8x + 5 + 2 > 6x + 9 \][/tex]
Simplify:
[tex]\[ 14x + 7 > 6x + 9 \][/tex]
3. Isolate the variable [tex]\(x\)[/tex]:
First, subtract [tex]\(6x\)[/tex] from both sides to remove the [tex]\(x\)[/tex] term from the right side:
[tex]\[ 14x - 6x + 7 > 6x - 6x + 9 \][/tex]
Simplify:
[tex]\[ 8x + 7 > 9 \][/tex]
4. Subtract 7 from Both Sides:
[tex]\[ 8x + 7 - 7 > 9 - 7 \][/tex]
Simplify:
[tex]\[ 8x > 2 \][/tex]
5. Divide by 8:
[tex]\[ \frac{8x}{8} > \frac{2}{8} \][/tex]
Simplify:
[tex]\[ x > \frac{1}{4} \][/tex]
Thus, the solution to the inequality [tex]\(6x + 5 + 2(4x + 1) > 6x + 9\)[/tex] is:
[tex]\[ x > \frac{1}{4} \][/tex]
In interval notation, this solution can be expressed as:
[tex]\[ \left( \frac{1}{4}, \infty \right) \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.