Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To factor the trinomial [tex]\( x^2 - 10x + 9 \)[/tex], we follow these steps:
1. Identify the coefficients from the quadratic equation [tex]\( ax^2 + bx + c \)[/tex]:
- [tex]\( a = 1 \)[/tex] (coefficient of [tex]\( x^2 \)[/tex])
- [tex]\( b = -10 \)[/tex] (coefficient of [tex]\( x \)[/tex])
- [tex]\( c = 9 \)[/tex] (constant term)
2. Find two numbers that multiply to [tex]\( ac \)[/tex] (product of [tex]\( a \)[/tex] and [tex]\( c \)[/tex]) and add up to [tex]\( b \)[/tex]:
- Here, [tex]\( ac = 1 \cdot 9 = 9 \)[/tex]
- We need two numbers that multiply to 9 and add up to -10.
3. The pair of numbers that satisfies these conditions is [tex]\( -1 \)[/tex] and [tex]\( -9 \)[/tex], because:
- [tex]\( (-1) \cdot (-9) = 9 \)[/tex] (they multiply to [tex]\( c \)[/tex])
- [tex]\( -1 + (-9) = -10 \)[/tex] (they add up to [tex]\( b \)[/tex])
4. Rewrite the middle term (-10x) using the two numbers found:
[tex]\[ x^2 - 10x + 9 = x^2 - x - 9x + 9 \][/tex]
5. Factor by grouping:
- Group the terms: [tex]\((x^2 - x)\)[/tex] and [tex]\((-9x + 9)\)[/tex]
- Factor out the greatest common factor (GCF) from each group:
[tex]\[ x(x - 1) - 9(x - 1) \][/tex]
6. Factor out the common binomial factor:
- Notice that [tex]\((x - 1)\)[/tex] is a common factor in both groups:
[tex]\[ (x - 1)(x - 9) \][/tex]
Thus, the factored form of the trinomial [tex]\( x^2 - 10x + 9 \)[/tex] is:
[tex]\[ (x - 1)(x - 9) \][/tex]
1. Identify the coefficients from the quadratic equation [tex]\( ax^2 + bx + c \)[/tex]:
- [tex]\( a = 1 \)[/tex] (coefficient of [tex]\( x^2 \)[/tex])
- [tex]\( b = -10 \)[/tex] (coefficient of [tex]\( x \)[/tex])
- [tex]\( c = 9 \)[/tex] (constant term)
2. Find two numbers that multiply to [tex]\( ac \)[/tex] (product of [tex]\( a \)[/tex] and [tex]\( c \)[/tex]) and add up to [tex]\( b \)[/tex]:
- Here, [tex]\( ac = 1 \cdot 9 = 9 \)[/tex]
- We need two numbers that multiply to 9 and add up to -10.
3. The pair of numbers that satisfies these conditions is [tex]\( -1 \)[/tex] and [tex]\( -9 \)[/tex], because:
- [tex]\( (-1) \cdot (-9) = 9 \)[/tex] (they multiply to [tex]\( c \)[/tex])
- [tex]\( -1 + (-9) = -10 \)[/tex] (they add up to [tex]\( b \)[/tex])
4. Rewrite the middle term (-10x) using the two numbers found:
[tex]\[ x^2 - 10x + 9 = x^2 - x - 9x + 9 \][/tex]
5. Factor by grouping:
- Group the terms: [tex]\((x^2 - x)\)[/tex] and [tex]\((-9x + 9)\)[/tex]
- Factor out the greatest common factor (GCF) from each group:
[tex]\[ x(x - 1) - 9(x - 1) \][/tex]
6. Factor out the common binomial factor:
- Notice that [tex]\((x - 1)\)[/tex] is a common factor in both groups:
[tex]\[ (x - 1)(x - 9) \][/tex]
Thus, the factored form of the trinomial [tex]\( x^2 - 10x + 9 \)[/tex] is:
[tex]\[ (x - 1)(x - 9) \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.