At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Factor the following trinomial:

[tex]\( x^2 - 10x + 9 \)[/tex]

Give your answer in the form [tex]\((x + a)(x + b)\)[/tex].

Provide your answer below:


Sagot :

To factor the trinomial [tex]\( x^2 - 10x + 9 \)[/tex], we follow these steps:

1. Identify the coefficients from the quadratic equation [tex]\( ax^2 + bx + c \)[/tex]:
- [tex]\( a = 1 \)[/tex] (coefficient of [tex]\( x^2 \)[/tex])
- [tex]\( b = -10 \)[/tex] (coefficient of [tex]\( x \)[/tex])
- [tex]\( c = 9 \)[/tex] (constant term)

2. Find two numbers that multiply to [tex]\( ac \)[/tex] (product of [tex]\( a \)[/tex] and [tex]\( c \)[/tex]) and add up to [tex]\( b \)[/tex]:
- Here, [tex]\( ac = 1 \cdot 9 = 9 \)[/tex]
- We need two numbers that multiply to 9 and add up to -10.

3. The pair of numbers that satisfies these conditions is [tex]\( -1 \)[/tex] and [tex]\( -9 \)[/tex], because:
- [tex]\( (-1) \cdot (-9) = 9 \)[/tex] (they multiply to [tex]\( c \)[/tex])
- [tex]\( -1 + (-9) = -10 \)[/tex] (they add up to [tex]\( b \)[/tex])

4. Rewrite the middle term (-10x) using the two numbers found:
[tex]\[ x^2 - 10x + 9 = x^2 - x - 9x + 9 \][/tex]

5. Factor by grouping:
- Group the terms: [tex]\((x^2 - x)\)[/tex] and [tex]\((-9x + 9)\)[/tex]
- Factor out the greatest common factor (GCF) from each group:
[tex]\[ x(x - 1) - 9(x - 1) \][/tex]

6. Factor out the common binomial factor:
- Notice that [tex]\((x - 1)\)[/tex] is a common factor in both groups:
[tex]\[ (x - 1)(x - 9) \][/tex]

Thus, the factored form of the trinomial [tex]\( x^2 - 10x + 9 \)[/tex] is:
[tex]\[ (x - 1)(x - 9) \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.