Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the Pearson correlation coefficient [tex]\( r \)[/tex] for the given data, we need to follow these steps:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \text{Mean of } x = \bar{x} = \frac{6 + 8 + 12 + 14 + 18}{5} = \frac{58}{5} = 11.6 \][/tex]
[tex]\[ \text{Mean of } y = \bar{y} = \frac{5 + 2 + 9 + 8 + 9}{5} = \frac{33}{5} = 6.6 \][/tex]
2. Compute the deviations from the mean:
For [tex]\( x \)[/tex]:
[tex]\[ x - \bar{x} = \{ 6 - 11.6, 8 - 11.6, 12 - 11.6, 14 - 11.6, 18 - 11.6 \} = \{ -5.6, -3.6, 0.4, 2.4, 6.4 \} \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ y - \bar{y} = \{ 5 - 6.6, 2 - 6.6, 9 - 6.6, 8 - 6.6, 9 - 6.6 \} = \{ -1.6, -4.6, 2.4, 1.4, 2.4 \} \][/tex]
3. Find the product of the deviations for each pair:
[tex]\[ (x - \bar{x})(y - \bar{y}) = \{ (-5.6 \times -1.6), (-3.6 \times -4.6), (0.4 \times 2.4), (2.4 \times 1.4), (6.4 \times 2.4) \} \][/tex]
[tex]\[ = \{ 8.96, 16.56, 0.96, 3.36, 15.36 \} \][/tex]
4. Sum the products of the deviations:
[tex]\[ \sum{(x - \bar{x})(y - \bar{y})} = 8.96 + 16.56 + 0.96 + 3.36 + 15.36 = 45.2 \][/tex]
5. Calculate the squares of the deviations:
For [tex]\( x \)[/tex]:
[tex]\[ (x - \bar{x})^2 = \{ (-5.6)^2, (-3.6)^2, (0.4)^2, (2.4)^2, (6.4)^2 \} = \{ 31.36, 12.96, 0.16, 5.76, 40.96 \} \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ (y - \bar{y})^2 = \{ (-1.6)^2, (-4.6)^2, (2.4)^2, (1.4)^2, (2.4)^2 \} = \{ 2.56, 21.16, 5.76, 1.96, 5.76 \} \][/tex]
6. Sum the squares of the deviations:
For [tex]\( x \)[/tex]:
[tex]\[ \sum{(x - \bar{x})^2} = 31.36 + 12.96 + 0.16 + 5.76 + 40.96 = 91.2 \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ \sum{(y - \bar{y})^2} = 2.56 + 21.16 + 5.76 + 1.96 + 5.76 = 37.2 \][/tex]
7. Compute the Pearson correlation coefficient [tex]\( r \)[/tex]:
[tex]\[ r = \frac{\sum{(x - \bar{x})(y - \bar{y})}}{\sqrt{\sum{(x - \bar{x})^2} \sum{(y - \bar{y})^2}}} \][/tex]
With the given summations:
[tex]\[ r = \frac{45.2}{\sqrt{91.2 \times 37.2}} \][/tex]
8. Calculate the denominator:
[tex]\[ \sqrt{91.2 \times 37.2} = \sqrt{3394.64} \approx 58.246373 \][/tex]
9. Final calculation of [tex]\( r \)[/tex]:
[tex]\[ r = \frac{45.2}{58.246373} \approx 0.776 \][/tex]
So, the Pearson correlation coefficient [tex]\( r \)[/tex] for the given data is approximately [tex]\( 0.776 \)[/tex], rounded to three decimal places.
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \text{Mean of } x = \bar{x} = \frac{6 + 8 + 12 + 14 + 18}{5} = \frac{58}{5} = 11.6 \][/tex]
[tex]\[ \text{Mean of } y = \bar{y} = \frac{5 + 2 + 9 + 8 + 9}{5} = \frac{33}{5} = 6.6 \][/tex]
2. Compute the deviations from the mean:
For [tex]\( x \)[/tex]:
[tex]\[ x - \bar{x} = \{ 6 - 11.6, 8 - 11.6, 12 - 11.6, 14 - 11.6, 18 - 11.6 \} = \{ -5.6, -3.6, 0.4, 2.4, 6.4 \} \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ y - \bar{y} = \{ 5 - 6.6, 2 - 6.6, 9 - 6.6, 8 - 6.6, 9 - 6.6 \} = \{ -1.6, -4.6, 2.4, 1.4, 2.4 \} \][/tex]
3. Find the product of the deviations for each pair:
[tex]\[ (x - \bar{x})(y - \bar{y}) = \{ (-5.6 \times -1.6), (-3.6 \times -4.6), (0.4 \times 2.4), (2.4 \times 1.4), (6.4 \times 2.4) \} \][/tex]
[tex]\[ = \{ 8.96, 16.56, 0.96, 3.36, 15.36 \} \][/tex]
4. Sum the products of the deviations:
[tex]\[ \sum{(x - \bar{x})(y - \bar{y})} = 8.96 + 16.56 + 0.96 + 3.36 + 15.36 = 45.2 \][/tex]
5. Calculate the squares of the deviations:
For [tex]\( x \)[/tex]:
[tex]\[ (x - \bar{x})^2 = \{ (-5.6)^2, (-3.6)^2, (0.4)^2, (2.4)^2, (6.4)^2 \} = \{ 31.36, 12.96, 0.16, 5.76, 40.96 \} \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ (y - \bar{y})^2 = \{ (-1.6)^2, (-4.6)^2, (2.4)^2, (1.4)^2, (2.4)^2 \} = \{ 2.56, 21.16, 5.76, 1.96, 5.76 \} \][/tex]
6. Sum the squares of the deviations:
For [tex]\( x \)[/tex]:
[tex]\[ \sum{(x - \bar{x})^2} = 31.36 + 12.96 + 0.16 + 5.76 + 40.96 = 91.2 \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ \sum{(y - \bar{y})^2} = 2.56 + 21.16 + 5.76 + 1.96 + 5.76 = 37.2 \][/tex]
7. Compute the Pearson correlation coefficient [tex]\( r \)[/tex]:
[tex]\[ r = \frac{\sum{(x - \bar{x})(y - \bar{y})}}{\sqrt{\sum{(x - \bar{x})^2} \sum{(y - \bar{y})^2}}} \][/tex]
With the given summations:
[tex]\[ r = \frac{45.2}{\sqrt{91.2 \times 37.2}} \][/tex]
8. Calculate the denominator:
[tex]\[ \sqrt{91.2 \times 37.2} = \sqrt{3394.64} \approx 58.246373 \][/tex]
9. Final calculation of [tex]\( r \)[/tex]:
[tex]\[ r = \frac{45.2}{58.246373} \approx 0.776 \][/tex]
So, the Pearson correlation coefficient [tex]\( r \)[/tex] for the given data is approximately [tex]\( 0.776 \)[/tex], rounded to three decimal places.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.