Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the Pearson correlation coefficient [tex]\( r \)[/tex] for the given data, we need to follow these steps:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \text{Mean of } x = \bar{x} = \frac{6 + 8 + 12 + 14 + 18}{5} = \frac{58}{5} = 11.6 \][/tex]
[tex]\[ \text{Mean of } y = \bar{y} = \frac{5 + 2 + 9 + 8 + 9}{5} = \frac{33}{5} = 6.6 \][/tex]
2. Compute the deviations from the mean:
For [tex]\( x \)[/tex]:
[tex]\[ x - \bar{x} = \{ 6 - 11.6, 8 - 11.6, 12 - 11.6, 14 - 11.6, 18 - 11.6 \} = \{ -5.6, -3.6, 0.4, 2.4, 6.4 \} \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ y - \bar{y} = \{ 5 - 6.6, 2 - 6.6, 9 - 6.6, 8 - 6.6, 9 - 6.6 \} = \{ -1.6, -4.6, 2.4, 1.4, 2.4 \} \][/tex]
3. Find the product of the deviations for each pair:
[tex]\[ (x - \bar{x})(y - \bar{y}) = \{ (-5.6 \times -1.6), (-3.6 \times -4.6), (0.4 \times 2.4), (2.4 \times 1.4), (6.4 \times 2.4) \} \][/tex]
[tex]\[ = \{ 8.96, 16.56, 0.96, 3.36, 15.36 \} \][/tex]
4. Sum the products of the deviations:
[tex]\[ \sum{(x - \bar{x})(y - \bar{y})} = 8.96 + 16.56 + 0.96 + 3.36 + 15.36 = 45.2 \][/tex]
5. Calculate the squares of the deviations:
For [tex]\( x \)[/tex]:
[tex]\[ (x - \bar{x})^2 = \{ (-5.6)^2, (-3.6)^2, (0.4)^2, (2.4)^2, (6.4)^2 \} = \{ 31.36, 12.96, 0.16, 5.76, 40.96 \} \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ (y - \bar{y})^2 = \{ (-1.6)^2, (-4.6)^2, (2.4)^2, (1.4)^2, (2.4)^2 \} = \{ 2.56, 21.16, 5.76, 1.96, 5.76 \} \][/tex]
6. Sum the squares of the deviations:
For [tex]\( x \)[/tex]:
[tex]\[ \sum{(x - \bar{x})^2} = 31.36 + 12.96 + 0.16 + 5.76 + 40.96 = 91.2 \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ \sum{(y - \bar{y})^2} = 2.56 + 21.16 + 5.76 + 1.96 + 5.76 = 37.2 \][/tex]
7. Compute the Pearson correlation coefficient [tex]\( r \)[/tex]:
[tex]\[ r = \frac{\sum{(x - \bar{x})(y - \bar{y})}}{\sqrt{\sum{(x - \bar{x})^2} \sum{(y - \bar{y})^2}}} \][/tex]
With the given summations:
[tex]\[ r = \frac{45.2}{\sqrt{91.2 \times 37.2}} \][/tex]
8. Calculate the denominator:
[tex]\[ \sqrt{91.2 \times 37.2} = \sqrt{3394.64} \approx 58.246373 \][/tex]
9. Final calculation of [tex]\( r \)[/tex]:
[tex]\[ r = \frac{45.2}{58.246373} \approx 0.776 \][/tex]
So, the Pearson correlation coefficient [tex]\( r \)[/tex] for the given data is approximately [tex]\( 0.776 \)[/tex], rounded to three decimal places.
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \text{Mean of } x = \bar{x} = \frac{6 + 8 + 12 + 14 + 18}{5} = \frac{58}{5} = 11.6 \][/tex]
[tex]\[ \text{Mean of } y = \bar{y} = \frac{5 + 2 + 9 + 8 + 9}{5} = \frac{33}{5} = 6.6 \][/tex]
2. Compute the deviations from the mean:
For [tex]\( x \)[/tex]:
[tex]\[ x - \bar{x} = \{ 6 - 11.6, 8 - 11.6, 12 - 11.6, 14 - 11.6, 18 - 11.6 \} = \{ -5.6, -3.6, 0.4, 2.4, 6.4 \} \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ y - \bar{y} = \{ 5 - 6.6, 2 - 6.6, 9 - 6.6, 8 - 6.6, 9 - 6.6 \} = \{ -1.6, -4.6, 2.4, 1.4, 2.4 \} \][/tex]
3. Find the product of the deviations for each pair:
[tex]\[ (x - \bar{x})(y - \bar{y}) = \{ (-5.6 \times -1.6), (-3.6 \times -4.6), (0.4 \times 2.4), (2.4 \times 1.4), (6.4 \times 2.4) \} \][/tex]
[tex]\[ = \{ 8.96, 16.56, 0.96, 3.36, 15.36 \} \][/tex]
4. Sum the products of the deviations:
[tex]\[ \sum{(x - \bar{x})(y - \bar{y})} = 8.96 + 16.56 + 0.96 + 3.36 + 15.36 = 45.2 \][/tex]
5. Calculate the squares of the deviations:
For [tex]\( x \)[/tex]:
[tex]\[ (x - \bar{x})^2 = \{ (-5.6)^2, (-3.6)^2, (0.4)^2, (2.4)^2, (6.4)^2 \} = \{ 31.36, 12.96, 0.16, 5.76, 40.96 \} \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ (y - \bar{y})^2 = \{ (-1.6)^2, (-4.6)^2, (2.4)^2, (1.4)^2, (2.4)^2 \} = \{ 2.56, 21.16, 5.76, 1.96, 5.76 \} \][/tex]
6. Sum the squares of the deviations:
For [tex]\( x \)[/tex]:
[tex]\[ \sum{(x - \bar{x})^2} = 31.36 + 12.96 + 0.16 + 5.76 + 40.96 = 91.2 \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ \sum{(y - \bar{y})^2} = 2.56 + 21.16 + 5.76 + 1.96 + 5.76 = 37.2 \][/tex]
7. Compute the Pearson correlation coefficient [tex]\( r \)[/tex]:
[tex]\[ r = \frac{\sum{(x - \bar{x})(y - \bar{y})}}{\sqrt{\sum{(x - \bar{x})^2} \sum{(y - \bar{y})^2}}} \][/tex]
With the given summations:
[tex]\[ r = \frac{45.2}{\sqrt{91.2 \times 37.2}} \][/tex]
8. Calculate the denominator:
[tex]\[ \sqrt{91.2 \times 37.2} = \sqrt{3394.64} \approx 58.246373 \][/tex]
9. Final calculation of [tex]\( r \)[/tex]:
[tex]\[ r = \frac{45.2}{58.246373} \approx 0.776 \][/tex]
So, the Pearson correlation coefficient [tex]\( r \)[/tex] for the given data is approximately [tex]\( 0.776 \)[/tex], rounded to three decimal places.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.