Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the Pearson correlation coefficient [tex]\( r \)[/tex] for the given data, we need to follow these steps:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \text{Mean of } x = \bar{x} = \frac{6 + 8 + 12 + 14 + 18}{5} = \frac{58}{5} = 11.6 \][/tex]
[tex]\[ \text{Mean of } y = \bar{y} = \frac{5 + 2 + 9 + 8 + 9}{5} = \frac{33}{5} = 6.6 \][/tex]
2. Compute the deviations from the mean:
For [tex]\( x \)[/tex]:
[tex]\[ x - \bar{x} = \{ 6 - 11.6, 8 - 11.6, 12 - 11.6, 14 - 11.6, 18 - 11.6 \} = \{ -5.6, -3.6, 0.4, 2.4, 6.4 \} \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ y - \bar{y} = \{ 5 - 6.6, 2 - 6.6, 9 - 6.6, 8 - 6.6, 9 - 6.6 \} = \{ -1.6, -4.6, 2.4, 1.4, 2.4 \} \][/tex]
3. Find the product of the deviations for each pair:
[tex]\[ (x - \bar{x})(y - \bar{y}) = \{ (-5.6 \times -1.6), (-3.6 \times -4.6), (0.4 \times 2.4), (2.4 \times 1.4), (6.4 \times 2.4) \} \][/tex]
[tex]\[ = \{ 8.96, 16.56, 0.96, 3.36, 15.36 \} \][/tex]
4. Sum the products of the deviations:
[tex]\[ \sum{(x - \bar{x})(y - \bar{y})} = 8.96 + 16.56 + 0.96 + 3.36 + 15.36 = 45.2 \][/tex]
5. Calculate the squares of the deviations:
For [tex]\( x \)[/tex]:
[tex]\[ (x - \bar{x})^2 = \{ (-5.6)^2, (-3.6)^2, (0.4)^2, (2.4)^2, (6.4)^2 \} = \{ 31.36, 12.96, 0.16, 5.76, 40.96 \} \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ (y - \bar{y})^2 = \{ (-1.6)^2, (-4.6)^2, (2.4)^2, (1.4)^2, (2.4)^2 \} = \{ 2.56, 21.16, 5.76, 1.96, 5.76 \} \][/tex]
6. Sum the squares of the deviations:
For [tex]\( x \)[/tex]:
[tex]\[ \sum{(x - \bar{x})^2} = 31.36 + 12.96 + 0.16 + 5.76 + 40.96 = 91.2 \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ \sum{(y - \bar{y})^2} = 2.56 + 21.16 + 5.76 + 1.96 + 5.76 = 37.2 \][/tex]
7. Compute the Pearson correlation coefficient [tex]\( r \)[/tex]:
[tex]\[ r = \frac{\sum{(x - \bar{x})(y - \bar{y})}}{\sqrt{\sum{(x - \bar{x})^2} \sum{(y - \bar{y})^2}}} \][/tex]
With the given summations:
[tex]\[ r = \frac{45.2}{\sqrt{91.2 \times 37.2}} \][/tex]
8. Calculate the denominator:
[tex]\[ \sqrt{91.2 \times 37.2} = \sqrt{3394.64} \approx 58.246373 \][/tex]
9. Final calculation of [tex]\( r \)[/tex]:
[tex]\[ r = \frac{45.2}{58.246373} \approx 0.776 \][/tex]
So, the Pearson correlation coefficient [tex]\( r \)[/tex] for the given data is approximately [tex]\( 0.776 \)[/tex], rounded to three decimal places.
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \text{Mean of } x = \bar{x} = \frac{6 + 8 + 12 + 14 + 18}{5} = \frac{58}{5} = 11.6 \][/tex]
[tex]\[ \text{Mean of } y = \bar{y} = \frac{5 + 2 + 9 + 8 + 9}{5} = \frac{33}{5} = 6.6 \][/tex]
2. Compute the deviations from the mean:
For [tex]\( x \)[/tex]:
[tex]\[ x - \bar{x} = \{ 6 - 11.6, 8 - 11.6, 12 - 11.6, 14 - 11.6, 18 - 11.6 \} = \{ -5.6, -3.6, 0.4, 2.4, 6.4 \} \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ y - \bar{y} = \{ 5 - 6.6, 2 - 6.6, 9 - 6.6, 8 - 6.6, 9 - 6.6 \} = \{ -1.6, -4.6, 2.4, 1.4, 2.4 \} \][/tex]
3. Find the product of the deviations for each pair:
[tex]\[ (x - \bar{x})(y - \bar{y}) = \{ (-5.6 \times -1.6), (-3.6 \times -4.6), (0.4 \times 2.4), (2.4 \times 1.4), (6.4 \times 2.4) \} \][/tex]
[tex]\[ = \{ 8.96, 16.56, 0.96, 3.36, 15.36 \} \][/tex]
4. Sum the products of the deviations:
[tex]\[ \sum{(x - \bar{x})(y - \bar{y})} = 8.96 + 16.56 + 0.96 + 3.36 + 15.36 = 45.2 \][/tex]
5. Calculate the squares of the deviations:
For [tex]\( x \)[/tex]:
[tex]\[ (x - \bar{x})^2 = \{ (-5.6)^2, (-3.6)^2, (0.4)^2, (2.4)^2, (6.4)^2 \} = \{ 31.36, 12.96, 0.16, 5.76, 40.96 \} \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ (y - \bar{y})^2 = \{ (-1.6)^2, (-4.6)^2, (2.4)^2, (1.4)^2, (2.4)^2 \} = \{ 2.56, 21.16, 5.76, 1.96, 5.76 \} \][/tex]
6. Sum the squares of the deviations:
For [tex]\( x \)[/tex]:
[tex]\[ \sum{(x - \bar{x})^2} = 31.36 + 12.96 + 0.16 + 5.76 + 40.96 = 91.2 \][/tex]
For [tex]\( y \)[/tex]:
[tex]\[ \sum{(y - \bar{y})^2} = 2.56 + 21.16 + 5.76 + 1.96 + 5.76 = 37.2 \][/tex]
7. Compute the Pearson correlation coefficient [tex]\( r \)[/tex]:
[tex]\[ r = \frac{\sum{(x - \bar{x})(y - \bar{y})}}{\sqrt{\sum{(x - \bar{x})^2} \sum{(y - \bar{y})^2}}} \][/tex]
With the given summations:
[tex]\[ r = \frac{45.2}{\sqrt{91.2 \times 37.2}} \][/tex]
8. Calculate the denominator:
[tex]\[ \sqrt{91.2 \times 37.2} = \sqrt{3394.64} \approx 58.246373 \][/tex]
9. Final calculation of [tex]\( r \)[/tex]:
[tex]\[ r = \frac{45.2}{58.246373} \approx 0.776 \][/tex]
So, the Pearson correlation coefficient [tex]\( r \)[/tex] for the given data is approximately [tex]\( 0.776 \)[/tex], rounded to three decimal places.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.