Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To factor the greatest common factor (GCF) out of the expression [tex]\( 72x^6 + 40x^4 \)[/tex], follow these steps:
### Step 1: Identify the greatest common factor (GCF)
First, we need to find the GCF of the coefficients [tex]\( 72 \)[/tex] and [tex]\( 40 \)[/tex].
- The prime factorization of [tex]\( 72 \)[/tex] is [tex]\( 2^3 \times 3^2 \)[/tex].
- The prime factorization of [tex]\( 40 \)[/tex] is [tex]\( 2^3 \times 5 \)[/tex].
The highest power of the common prime factors is [tex]\( 2^3 = 8 \)[/tex].
Thus, the GCF of [tex]\( 72 \)[/tex] and [tex]\( 40 \)[/tex] is [tex]\( 8 \)[/tex].
Next, we consider the variables [tex]\( x^6 \)[/tex] and [tex]\( x^4 \)[/tex].
- The highest power of [tex]\( x \)[/tex] that is common in both terms is [tex]\( x^4 \)[/tex].
Therefore, the GCF of the expression [tex]\( 72x^6 + 40x^4 \)[/tex] is [tex]\( 8x^4 \)[/tex].
### Step 2: Factor out the GCF from each term
Now, we factor [tex]\( 8x^4 \)[/tex] out of [tex]\( 72x^6 \)[/tex] and [tex]\( 40x^4 \)[/tex]:
[tex]\[ 72x^6 \div 8x^4 = 9x^2 \][/tex]
[tex]\[ 40x^4 \div 8x^4 = 5 \][/tex]
### Step 3: Write the factored form of the expression
Thus, factoring [tex]\( 8x^4 \)[/tex] out of [tex]\( 72x^6 + 40x^4 \)[/tex] gives us:
[tex]\[ 8x^4 (9x^2 + 5) \][/tex]
### Final Answer:
The expression [tex]\( 72x^6 + 40x^4 \)[/tex] factored by its greatest common factor (GCF) is [tex]\( 8x^4 (9x^2 + 5) \)[/tex].
### Step 1: Identify the greatest common factor (GCF)
First, we need to find the GCF of the coefficients [tex]\( 72 \)[/tex] and [tex]\( 40 \)[/tex].
- The prime factorization of [tex]\( 72 \)[/tex] is [tex]\( 2^3 \times 3^2 \)[/tex].
- The prime factorization of [tex]\( 40 \)[/tex] is [tex]\( 2^3 \times 5 \)[/tex].
The highest power of the common prime factors is [tex]\( 2^3 = 8 \)[/tex].
Thus, the GCF of [tex]\( 72 \)[/tex] and [tex]\( 40 \)[/tex] is [tex]\( 8 \)[/tex].
Next, we consider the variables [tex]\( x^6 \)[/tex] and [tex]\( x^4 \)[/tex].
- The highest power of [tex]\( x \)[/tex] that is common in both terms is [tex]\( x^4 \)[/tex].
Therefore, the GCF of the expression [tex]\( 72x^6 + 40x^4 \)[/tex] is [tex]\( 8x^4 \)[/tex].
### Step 2: Factor out the GCF from each term
Now, we factor [tex]\( 8x^4 \)[/tex] out of [tex]\( 72x^6 \)[/tex] and [tex]\( 40x^4 \)[/tex]:
[tex]\[ 72x^6 \div 8x^4 = 9x^2 \][/tex]
[tex]\[ 40x^4 \div 8x^4 = 5 \][/tex]
### Step 3: Write the factored form of the expression
Thus, factoring [tex]\( 8x^4 \)[/tex] out of [tex]\( 72x^6 + 40x^4 \)[/tex] gives us:
[tex]\[ 8x^4 (9x^2 + 5) \][/tex]
### Final Answer:
The expression [tex]\( 72x^6 + 40x^4 \)[/tex] factored by its greatest common factor (GCF) is [tex]\( 8x^4 (9x^2 + 5) \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.