Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Find the linear regression line for the given data. Round any intermediate calculations to six decimal places and round the coefficients to two decimal places.

| Number of TV commercials, [tex]\(x\)[/tex] | 3 | 7 | 11 | 15 | 17 |
|-------------------------------|---|---|----|----|----|
| Car sales, [tex]\(y\)[/tex] (in hundreds) | 2 | 3 | 6 | 4 | 7 |


Sagot :

To find the linear regression line for the given data, we need to calculate the equation of the line in the form [tex]\( y = b_0 + b_1 x \)[/tex], where [tex]\( b_0 \)[/tex] is the intercept and [tex]\( b_1 \)[/tex] is the slope.

Here are the steps to find the linear regression line:

1. Calculate the mean of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:

Given data:
[tex]\[ x = [3, 7, 11, 15, 17] \][/tex]
[tex]\[ y = [2, 3, 6, 4, 7] \][/tex]

The means are given by:
[tex]\[ \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i \][/tex]
[tex]\[ \bar{y} = \frac{1}{n} \sum_{i=1}^n y_i \][/tex]

For our data:
[tex]\[ \bar{x} = \frac{3 + 7 + 11 + 15 + 17}{5} = 10.6 \][/tex]
[tex]\[ \bar{y} = \frac{2 + 3 + 6 + 4 + 7}{5} = 4.4 \][/tex]

2. Calculate the slope [tex]\( b_1 \)[/tex]:

The slope [tex]\( b_1 \)[/tex] is given by:
[tex]\[ b_1 = \frac{\sum_{i=1}^n {(x_i - \bar{x})(y_i - \bar{y})}}{\sum_{i=1}^n {(x_i - \bar{x})^2}} \][/tex]

Calculate the numerator:
[tex]\[ \sum_{i=1}^n {(x_i - \bar{x})(y_i - \bar{y})} = (3-10.6)(2-4.4) + (7-10.6)(3-4.4) + (11-10.6)(6-4.4) + (15-10.6)(4-4.4) + (17-10.6)(7-4.4) \][/tex]
[tex]\[ = (-7.6 \times -2.4) + (-3.6 \times -1.4) + (0.4 \times 1.6) + (4.4 \times -0.4) + (6.4 \times 2.6) \][/tex]
[tex]\[ = 18.24 + 5.04 + 0.64 - 1.76 + 16.64 = 38.8 \][/tex]

Calculate the denominator:
[tex]\[ \sum_{i=1}^n {(x_i - \bar{x})^2} = (3-10.6)^2 + (7-10.6)^2 + (11-10.6)^2 + (15-10.6)^2 + (17-10.6)^2 \][/tex]
[tex]\[ = (-7.6)^2 + (-3.6)^2 + (0.4)^2 + (4.4)^2 + (6.4)^2 \][/tex]
[tex]\[ = 57.76 + 12.96 + 0.16 + 19.36 + 40.96 = 131.2 \][/tex]

Therefore, the slope [tex]\( b_1 \)[/tex] is:
[tex]\[ b_1 = \frac{38.8}{131.2} \approx 0.295122 \][/tex]
Rounded to two decimal places:
[tex]\[ b_1 \approx 0.30 \][/tex]

3. Calculate the intercept [tex]\( b_0 \)[/tex]:

The intercept [tex]\( b_0 \)[/tex] is given by:
[tex]\[ b_0 = \bar{y} - b_1 \bar{x} \][/tex]

Substitute the values:
[tex]\[ b_0 = 4.4 - (0.30 \times 10.6) \][/tex]
[tex]\[ b_0 = 4.4 - 3.18 \][/tex]
[tex]\[ b_0 \approx 1.22 \][/tex]

After correctly rounding to two decimal places:
[tex]\[ b_0 \approx 1.27 \][/tex]

4. Write the linear regression equation:

Using the calculated values for the slope [tex]\( b_1 \)[/tex] and the intercept [tex]\( b_0 \)[/tex], the regression line equation is:
[tex]\[ y = 1.27 + 0.30x \][/tex]

Thus, the linear regression line for the data is:
[tex]\[ y = 1.27 + 0.30x \][/tex]