Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve this problem, we need to apply the transformation rule [tex]\( R_{0,180^\circ} \)[/tex] to each vertex of the triangle. The given transformation [tex]\( R_{0,180^\circ} \)[/tex] rotates each point by 180 degrees around the origin. Mathematically, this is represented by the transformation [tex]\( (x, y) \rightarrow (-x, -y) \)[/tex].
Let's apply this transformation to each vertex:
1. Vertex [tex]\( L(2,2) \)[/tex]:
[tex]\[ L' = (-2, -2) \][/tex]
2. Vertex [tex]\( M(4,4) \)[/tex]:
[tex]\[ M' = (-4, -4) \][/tex]
3. Vertex [tex]\( N(1,6) \)[/tex]:
[tex]\[ N' = (-1, -6) \][/tex]
Now, let’s evaluate the provided statements:
1. The coordinates of [tex]\( N' \)[/tex] are [tex]\( (6, -1) \)[/tex]:
- This statement is false. As calculated, [tex]\( N' \)[/tex] is [tex]\((-1, -6)\)[/tex].
2. The rule for the transformation is [tex]\((x, y) \rightarrow (-x, -y)\)[/tex]:
- This statement is true. This indeed is the rule for a 180-degree rotation around the origin.
3. The coordinates of [tex]\( N' \)[/tex] are [tex]\((-1, -6)\)[/tex]:
- This statement is true. We calculated [tex]\( N' \)[/tex] to be [tex]\((-1, -6)\)[/tex].
4. The coordinates of [tex]\( L' \)[/tex] are [tex]\((-2, -2)\)[/tex]:
- This statement is true. We calculated [tex]\( L' \)[/tex] to be [tex]\((-2, -2)\)[/tex].
5. The coordinates of [tex]\( M' \)[/tex] are [tex]\((-4, 4)\)[/tex]:
- This statement is false. As calculated, [tex]\( M' \)[/tex] is [tex]\((-4, -4)\)[/tex].
Thus, the three correct statements are:
- The rule for the transformation is [tex]\((x, y) \rightarrow (-x, -y)\)[/tex].
- The coordinates of [tex]\( N' \)[/tex] are [tex]\((-1, -6)\)[/tex].
- The coordinates of [tex]\( L' \)[/tex] are [tex]\((-2, -2)\)[/tex].
Hence, there are exactly 3 correct statements out of the given options.
Let's apply this transformation to each vertex:
1. Vertex [tex]\( L(2,2) \)[/tex]:
[tex]\[ L' = (-2, -2) \][/tex]
2. Vertex [tex]\( M(4,4) \)[/tex]:
[tex]\[ M' = (-4, -4) \][/tex]
3. Vertex [tex]\( N(1,6) \)[/tex]:
[tex]\[ N' = (-1, -6) \][/tex]
Now, let’s evaluate the provided statements:
1. The coordinates of [tex]\( N' \)[/tex] are [tex]\( (6, -1) \)[/tex]:
- This statement is false. As calculated, [tex]\( N' \)[/tex] is [tex]\((-1, -6)\)[/tex].
2. The rule for the transformation is [tex]\((x, y) \rightarrow (-x, -y)\)[/tex]:
- This statement is true. This indeed is the rule for a 180-degree rotation around the origin.
3. The coordinates of [tex]\( N' \)[/tex] are [tex]\((-1, -6)\)[/tex]:
- This statement is true. We calculated [tex]\( N' \)[/tex] to be [tex]\((-1, -6)\)[/tex].
4. The coordinates of [tex]\( L' \)[/tex] are [tex]\((-2, -2)\)[/tex]:
- This statement is true. We calculated [tex]\( L' \)[/tex] to be [tex]\((-2, -2)\)[/tex].
5. The coordinates of [tex]\( M' \)[/tex] are [tex]\((-4, 4)\)[/tex]:
- This statement is false. As calculated, [tex]\( M' \)[/tex] is [tex]\((-4, -4)\)[/tex].
Thus, the three correct statements are:
- The rule for the transformation is [tex]\((x, y) \rightarrow (-x, -y)\)[/tex].
- The coordinates of [tex]\( N' \)[/tex] are [tex]\((-1, -6)\)[/tex].
- The coordinates of [tex]\( L' \)[/tex] are [tex]\((-2, -2)\)[/tex].
Hence, there are exactly 3 correct statements out of the given options.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.