Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

A triangle has vertices at [tex]\( L (2,2), M (4,4), \)[/tex] and [tex]\( N (1,6) \)[/tex]. The triangle is transformed according to the rule [tex]\( R_{0,180^{\circ}} \)[/tex].

Which statements are true regarding the transformation? Choose three correct answers.

A. The coordinates of [tex]\( N' \)[/tex] are [tex]\( (6,-1) \)[/tex].

B. The rule for the transformation is [tex]\( (x, y) \rightarrow (-x,-y) \)[/tex].

C. The coordinates of [tex]\( N' \)[/tex] are [tex]\( (-1,-6) \)[/tex].

D. The coordinates of [tex]\( L' \)[/tex] are [tex]\( (-2,-2) \)[/tex].

E. The coordinates of [tex]\( M' \)[/tex] are [tex]\( (-4,-4) \)[/tex].

This question requires at least 3 answers.


Sagot :

To solve this problem, we need to apply the transformation rule [tex]\( R_{0,180^\circ} \)[/tex] to each vertex of the triangle. The given transformation [tex]\( R_{0,180^\circ} \)[/tex] rotates each point by 180 degrees around the origin. Mathematically, this is represented by the transformation [tex]\( (x, y) \rightarrow (-x, -y) \)[/tex].

Let's apply this transformation to each vertex:

1. Vertex [tex]\( L(2,2) \)[/tex]:
[tex]\[ L' = (-2, -2) \][/tex]

2. Vertex [tex]\( M(4,4) \)[/tex]:
[tex]\[ M' = (-4, -4) \][/tex]

3. Vertex [tex]\( N(1,6) \)[/tex]:
[tex]\[ N' = (-1, -6) \][/tex]

Now, let’s evaluate the provided statements:

1. The coordinates of [tex]\( N' \)[/tex] are [tex]\( (6, -1) \)[/tex]:
- This statement is false. As calculated, [tex]\( N' \)[/tex] is [tex]\((-1, -6)\)[/tex].

2. The rule for the transformation is [tex]\((x, y) \rightarrow (-x, -y)\)[/tex]:
- This statement is true. This indeed is the rule for a 180-degree rotation around the origin.

3. The coordinates of [tex]\( N' \)[/tex] are [tex]\((-1, -6)\)[/tex]:
- This statement is true. We calculated [tex]\( N' \)[/tex] to be [tex]\((-1, -6)\)[/tex].

4. The coordinates of [tex]\( L' \)[/tex] are [tex]\((-2, -2)\)[/tex]:
- This statement is true. We calculated [tex]\( L' \)[/tex] to be [tex]\((-2, -2)\)[/tex].

5. The coordinates of [tex]\( M' \)[/tex] are [tex]\((-4, 4)\)[/tex]:
- This statement is false. As calculated, [tex]\( M' \)[/tex] is [tex]\((-4, -4)\)[/tex].

Thus, the three correct statements are:
- The rule for the transformation is [tex]\((x, y) \rightarrow (-x, -y)\)[/tex].
- The coordinates of [tex]\( N' \)[/tex] are [tex]\((-1, -6)\)[/tex].
- The coordinates of [tex]\( L' \)[/tex] are [tex]\((-2, -2)\)[/tex].

Hence, there are exactly 3 correct statements out of the given options.