Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Sumy is working in geometry class and is given figure ABCD in the coordinate plane to reflect. The coordinates of point D are (a, b) and she reflects the figure over the line y = x. What are the coordinates of the image D'?

A. (a, -b)
B. (b, a)
C. (-a, b)
D. (-b, -a)


Sagot :

To find the coordinates of the image [tex]\( D' \)[/tex] after reflecting the point [tex]\( D \)[/tex] over the line [tex]\( y = x \)[/tex], we need to understand the properties of the reflection process.

### Reflection Over the Line [tex]\( y = x \)[/tex]
When a point [tex]\((x, y)\)[/tex] is reflected over the line [tex]\(y = x\)[/tex]:
- The [tex]\( x \)[/tex]-coordinate and [tex]\( y \)[/tex]-coordinate of the original point are swapped.

This means that if you have a point [tex]\(D\)[/tex] with coordinates [tex]\((a, b)\)[/tex], after reflecting it over the line [tex]\(y = x\)[/tex], the coordinates of the image [tex]\(D'\)[/tex] will be [tex]\((b, a)\)[/tex].

Let's confirm this with an example:

#### Example:
- Let the coordinates of point [tex]\(D\)[/tex] be [tex]\((3, 5)\)[/tex].
- After reflecting over the line [tex]\(y = x\)[/tex], the coordinates of [tex]\(D'\)[/tex] would be [tex]\((5, 3)\)[/tex].

So, following the same logic for any general point [tex]\((a, b)\)[/tex]:

### Step-by-Step Solution:
1. Identify the original coordinates of point [tex]\(D\)[/tex]: [tex]\((a, b)\)[/tex].
2. Reflect the point over the line [tex]\(y = x\)[/tex] by swapping the coordinates:
- The new [tex]\( x \)[/tex]-coordinate will be the original [tex]\( y \)[/tex]-coordinate [tex]\( b \)[/tex].
- The new [tex]\( y \)[/tex]-coordinate will be the original [tex]\( x \)[/tex]-coordinate [tex]\( a \)[/tex].

Thus, the coordinates of the image [tex]\(D'\)[/tex] after reflection are [tex]\((b, a)\)[/tex].

### Final Answer:
[tex]\( (b, a) \)[/tex]

This matches one of the given answer choices: [tex]\( (b, a) \)[/tex].