Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which of the given equations is quadratic in form, we need to identify the equation that can be written in the standard quadratic form [tex]\( ax^2 + bx + c = 0 \)[/tex]. Let's look at each equation step by step.
1. Equation: [tex]\( 4(x-2)^2 + 3x - 2 + 1 = 0 \)[/tex]
First, we expand [tex]\( 4(x-2)^2 \)[/tex]:
[tex]\[ 4(x-2)^2 = 4(x^2 - 4x + 4) = 4x^2 - 16x + 16 \][/tex]
Next, we combine the expanded equation with the remaining terms:
[tex]\[ 4x^2 - 16x + 16 + 3x - 2 + 1 = 0 \][/tex]
Simplify the equation:
[tex]\[ 4x^2 - 16x + 3x + 16 - 2 + 1 = 0 \][/tex]
[tex]\[ 4x^2 - 13x + 15 = 0 \][/tex]
This equation is of the form [tex]\( ax^2 + bx + c = 0 \)[/tex], which makes it a quadratic equation.
2. Equation: [tex]\( 8x^5 + 4x^3 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^5 \)[/tex] and [tex]\( x^3 \)[/tex] terms. Since a quadratic equation specifically requires an [tex]\( x^2 \)[/tex] term as the highest degree term, this equation is not quadratic.
3. Equation: [tex]\( 10x^8 + 7x^4 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^8 \)[/tex] and [tex]\( x^4 \)[/tex] terms. With the highest degree term being [tex]\( x^8 \)[/tex], this equation is not quadratic.
4. Equation: [tex]\( 9x^{16} + 6x^4 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^{16} \)[/tex] and [tex]\( x^4 \)[/tex] terms. With the highest degree term being [tex]\( x^{16} \)[/tex], this equation is not quadratic.
From the analysis, we can see that the first equation, [tex]\( 4(x-2)^2 + 3x - 2 + 1 = 0 \)[/tex], simplifies to [tex]\( 4x^2 - 13x + 15 = 0 \)[/tex], which is a quadratic equation. Therefore, the equation that is quadratic in form is:
[tex]\[ \boxed{4(x-2)^2 + 3x - 2 + 1 = 0} \][/tex]
or
[tex]\[ \boxed{1}. \][/tex]
1. Equation: [tex]\( 4(x-2)^2 + 3x - 2 + 1 = 0 \)[/tex]
First, we expand [tex]\( 4(x-2)^2 \)[/tex]:
[tex]\[ 4(x-2)^2 = 4(x^2 - 4x + 4) = 4x^2 - 16x + 16 \][/tex]
Next, we combine the expanded equation with the remaining terms:
[tex]\[ 4x^2 - 16x + 16 + 3x - 2 + 1 = 0 \][/tex]
Simplify the equation:
[tex]\[ 4x^2 - 16x + 3x + 16 - 2 + 1 = 0 \][/tex]
[tex]\[ 4x^2 - 13x + 15 = 0 \][/tex]
This equation is of the form [tex]\( ax^2 + bx + c = 0 \)[/tex], which makes it a quadratic equation.
2. Equation: [tex]\( 8x^5 + 4x^3 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^5 \)[/tex] and [tex]\( x^3 \)[/tex] terms. Since a quadratic equation specifically requires an [tex]\( x^2 \)[/tex] term as the highest degree term, this equation is not quadratic.
3. Equation: [tex]\( 10x^8 + 7x^4 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^8 \)[/tex] and [tex]\( x^4 \)[/tex] terms. With the highest degree term being [tex]\( x^8 \)[/tex], this equation is not quadratic.
4. Equation: [tex]\( 9x^{16} + 6x^4 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^{16} \)[/tex] and [tex]\( x^4 \)[/tex] terms. With the highest degree term being [tex]\( x^{16} \)[/tex], this equation is not quadratic.
From the analysis, we can see that the first equation, [tex]\( 4(x-2)^2 + 3x - 2 + 1 = 0 \)[/tex], simplifies to [tex]\( 4x^2 - 13x + 15 = 0 \)[/tex], which is a quadratic equation. Therefore, the equation that is quadratic in form is:
[tex]\[ \boxed{4(x-2)^2 + 3x - 2 + 1 = 0} \][/tex]
or
[tex]\[ \boxed{1}. \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.