Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which of the given equations is quadratic in form, we need to identify the equation that can be written in the standard quadratic form [tex]\( ax^2 + bx + c = 0 \)[/tex]. Let's look at each equation step by step.
1. Equation: [tex]\( 4(x-2)^2 + 3x - 2 + 1 = 0 \)[/tex]
First, we expand [tex]\( 4(x-2)^2 \)[/tex]:
[tex]\[ 4(x-2)^2 = 4(x^2 - 4x + 4) = 4x^2 - 16x + 16 \][/tex]
Next, we combine the expanded equation with the remaining terms:
[tex]\[ 4x^2 - 16x + 16 + 3x - 2 + 1 = 0 \][/tex]
Simplify the equation:
[tex]\[ 4x^2 - 16x + 3x + 16 - 2 + 1 = 0 \][/tex]
[tex]\[ 4x^2 - 13x + 15 = 0 \][/tex]
This equation is of the form [tex]\( ax^2 + bx + c = 0 \)[/tex], which makes it a quadratic equation.
2. Equation: [tex]\( 8x^5 + 4x^3 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^5 \)[/tex] and [tex]\( x^3 \)[/tex] terms. Since a quadratic equation specifically requires an [tex]\( x^2 \)[/tex] term as the highest degree term, this equation is not quadratic.
3. Equation: [tex]\( 10x^8 + 7x^4 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^8 \)[/tex] and [tex]\( x^4 \)[/tex] terms. With the highest degree term being [tex]\( x^8 \)[/tex], this equation is not quadratic.
4. Equation: [tex]\( 9x^{16} + 6x^4 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^{16} \)[/tex] and [tex]\( x^4 \)[/tex] terms. With the highest degree term being [tex]\( x^{16} \)[/tex], this equation is not quadratic.
From the analysis, we can see that the first equation, [tex]\( 4(x-2)^2 + 3x - 2 + 1 = 0 \)[/tex], simplifies to [tex]\( 4x^2 - 13x + 15 = 0 \)[/tex], which is a quadratic equation. Therefore, the equation that is quadratic in form is:
[tex]\[ \boxed{4(x-2)^2 + 3x - 2 + 1 = 0} \][/tex]
or
[tex]\[ \boxed{1}. \][/tex]
1. Equation: [tex]\( 4(x-2)^2 + 3x - 2 + 1 = 0 \)[/tex]
First, we expand [tex]\( 4(x-2)^2 \)[/tex]:
[tex]\[ 4(x-2)^2 = 4(x^2 - 4x + 4) = 4x^2 - 16x + 16 \][/tex]
Next, we combine the expanded equation with the remaining terms:
[tex]\[ 4x^2 - 16x + 16 + 3x - 2 + 1 = 0 \][/tex]
Simplify the equation:
[tex]\[ 4x^2 - 16x + 3x + 16 - 2 + 1 = 0 \][/tex]
[tex]\[ 4x^2 - 13x + 15 = 0 \][/tex]
This equation is of the form [tex]\( ax^2 + bx + c = 0 \)[/tex], which makes it a quadratic equation.
2. Equation: [tex]\( 8x^5 + 4x^3 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^5 \)[/tex] and [tex]\( x^3 \)[/tex] terms. Since a quadratic equation specifically requires an [tex]\( x^2 \)[/tex] term as the highest degree term, this equation is not quadratic.
3. Equation: [tex]\( 10x^8 + 7x^4 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^8 \)[/tex] and [tex]\( x^4 \)[/tex] terms. With the highest degree term being [tex]\( x^8 \)[/tex], this equation is not quadratic.
4. Equation: [tex]\( 9x^{16} + 6x^4 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^{16} \)[/tex] and [tex]\( x^4 \)[/tex] terms. With the highest degree term being [tex]\( x^{16} \)[/tex], this equation is not quadratic.
From the analysis, we can see that the first equation, [tex]\( 4(x-2)^2 + 3x - 2 + 1 = 0 \)[/tex], simplifies to [tex]\( 4x^2 - 13x + 15 = 0 \)[/tex], which is a quadratic equation. Therefore, the equation that is quadratic in form is:
[tex]\[ \boxed{4(x-2)^2 + 3x - 2 + 1 = 0} \][/tex]
or
[tex]\[ \boxed{1}. \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.