Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which of the given equations is quadratic in form, we need to identify the equation that can be written in the standard quadratic form [tex]\( ax^2 + bx + c = 0 \)[/tex]. Let's look at each equation step by step.
1. Equation: [tex]\( 4(x-2)^2 + 3x - 2 + 1 = 0 \)[/tex]
First, we expand [tex]\( 4(x-2)^2 \)[/tex]:
[tex]\[ 4(x-2)^2 = 4(x^2 - 4x + 4) = 4x^2 - 16x + 16 \][/tex]
Next, we combine the expanded equation with the remaining terms:
[tex]\[ 4x^2 - 16x + 16 + 3x - 2 + 1 = 0 \][/tex]
Simplify the equation:
[tex]\[ 4x^2 - 16x + 3x + 16 - 2 + 1 = 0 \][/tex]
[tex]\[ 4x^2 - 13x + 15 = 0 \][/tex]
This equation is of the form [tex]\( ax^2 + bx + c = 0 \)[/tex], which makes it a quadratic equation.
2. Equation: [tex]\( 8x^5 + 4x^3 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^5 \)[/tex] and [tex]\( x^3 \)[/tex] terms. Since a quadratic equation specifically requires an [tex]\( x^2 \)[/tex] term as the highest degree term, this equation is not quadratic.
3. Equation: [tex]\( 10x^8 + 7x^4 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^8 \)[/tex] and [tex]\( x^4 \)[/tex] terms. With the highest degree term being [tex]\( x^8 \)[/tex], this equation is not quadratic.
4. Equation: [tex]\( 9x^{16} + 6x^4 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^{16} \)[/tex] and [tex]\( x^4 \)[/tex] terms. With the highest degree term being [tex]\( x^{16} \)[/tex], this equation is not quadratic.
From the analysis, we can see that the first equation, [tex]\( 4(x-2)^2 + 3x - 2 + 1 = 0 \)[/tex], simplifies to [tex]\( 4x^2 - 13x + 15 = 0 \)[/tex], which is a quadratic equation. Therefore, the equation that is quadratic in form is:
[tex]\[ \boxed{4(x-2)^2 + 3x - 2 + 1 = 0} \][/tex]
or
[tex]\[ \boxed{1}. \][/tex]
1. Equation: [tex]\( 4(x-2)^2 + 3x - 2 + 1 = 0 \)[/tex]
First, we expand [tex]\( 4(x-2)^2 \)[/tex]:
[tex]\[ 4(x-2)^2 = 4(x^2 - 4x + 4) = 4x^2 - 16x + 16 \][/tex]
Next, we combine the expanded equation with the remaining terms:
[tex]\[ 4x^2 - 16x + 16 + 3x - 2 + 1 = 0 \][/tex]
Simplify the equation:
[tex]\[ 4x^2 - 16x + 3x + 16 - 2 + 1 = 0 \][/tex]
[tex]\[ 4x^2 - 13x + 15 = 0 \][/tex]
This equation is of the form [tex]\( ax^2 + bx + c = 0 \)[/tex], which makes it a quadratic equation.
2. Equation: [tex]\( 8x^5 + 4x^3 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^5 \)[/tex] and [tex]\( x^3 \)[/tex] terms. Since a quadratic equation specifically requires an [tex]\( x^2 \)[/tex] term as the highest degree term, this equation is not quadratic.
3. Equation: [tex]\( 10x^8 + 7x^4 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^8 \)[/tex] and [tex]\( x^4 \)[/tex] terms. With the highest degree term being [tex]\( x^8 \)[/tex], this equation is not quadratic.
4. Equation: [tex]\( 9x^{16} + 6x^4 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^{16} \)[/tex] and [tex]\( x^4 \)[/tex] terms. With the highest degree term being [tex]\( x^{16} \)[/tex], this equation is not quadratic.
From the analysis, we can see that the first equation, [tex]\( 4(x-2)^2 + 3x - 2 + 1 = 0 \)[/tex], simplifies to [tex]\( 4x^2 - 13x + 15 = 0 \)[/tex], which is a quadratic equation. Therefore, the equation that is quadratic in form is:
[tex]\[ \boxed{4(x-2)^2 + 3x - 2 + 1 = 0} \][/tex]
or
[tex]\[ \boxed{1}. \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.