Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which of the given equations is quadratic in form, we need to identify the equation that can be written in the standard quadratic form [tex]\( ax^2 + bx + c = 0 \)[/tex]. Let's look at each equation step by step.
1. Equation: [tex]\( 4(x-2)^2 + 3x - 2 + 1 = 0 \)[/tex]
First, we expand [tex]\( 4(x-2)^2 \)[/tex]:
[tex]\[ 4(x-2)^2 = 4(x^2 - 4x + 4) = 4x^2 - 16x + 16 \][/tex]
Next, we combine the expanded equation with the remaining terms:
[tex]\[ 4x^2 - 16x + 16 + 3x - 2 + 1 = 0 \][/tex]
Simplify the equation:
[tex]\[ 4x^2 - 16x + 3x + 16 - 2 + 1 = 0 \][/tex]
[tex]\[ 4x^2 - 13x + 15 = 0 \][/tex]
This equation is of the form [tex]\( ax^2 + bx + c = 0 \)[/tex], which makes it a quadratic equation.
2. Equation: [tex]\( 8x^5 + 4x^3 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^5 \)[/tex] and [tex]\( x^3 \)[/tex] terms. Since a quadratic equation specifically requires an [tex]\( x^2 \)[/tex] term as the highest degree term, this equation is not quadratic.
3. Equation: [tex]\( 10x^8 + 7x^4 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^8 \)[/tex] and [tex]\( x^4 \)[/tex] terms. With the highest degree term being [tex]\( x^8 \)[/tex], this equation is not quadratic.
4. Equation: [tex]\( 9x^{16} + 6x^4 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^{16} \)[/tex] and [tex]\( x^4 \)[/tex] terms. With the highest degree term being [tex]\( x^{16} \)[/tex], this equation is not quadratic.
From the analysis, we can see that the first equation, [tex]\( 4(x-2)^2 + 3x - 2 + 1 = 0 \)[/tex], simplifies to [tex]\( 4x^2 - 13x + 15 = 0 \)[/tex], which is a quadratic equation. Therefore, the equation that is quadratic in form is:
[tex]\[ \boxed{4(x-2)^2 + 3x - 2 + 1 = 0} \][/tex]
or
[tex]\[ \boxed{1}. \][/tex]
1. Equation: [tex]\( 4(x-2)^2 + 3x - 2 + 1 = 0 \)[/tex]
First, we expand [tex]\( 4(x-2)^2 \)[/tex]:
[tex]\[ 4(x-2)^2 = 4(x^2 - 4x + 4) = 4x^2 - 16x + 16 \][/tex]
Next, we combine the expanded equation with the remaining terms:
[tex]\[ 4x^2 - 16x + 16 + 3x - 2 + 1 = 0 \][/tex]
Simplify the equation:
[tex]\[ 4x^2 - 16x + 3x + 16 - 2 + 1 = 0 \][/tex]
[tex]\[ 4x^2 - 13x + 15 = 0 \][/tex]
This equation is of the form [tex]\( ax^2 + bx + c = 0 \)[/tex], which makes it a quadratic equation.
2. Equation: [tex]\( 8x^5 + 4x^3 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^5 \)[/tex] and [tex]\( x^3 \)[/tex] terms. Since a quadratic equation specifically requires an [tex]\( x^2 \)[/tex] term as the highest degree term, this equation is not quadratic.
3. Equation: [tex]\( 10x^8 + 7x^4 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^8 \)[/tex] and [tex]\( x^4 \)[/tex] terms. With the highest degree term being [tex]\( x^8 \)[/tex], this equation is not quadratic.
4. Equation: [tex]\( 9x^{16} + 6x^4 + 1 = 0 \)[/tex]
This equation involves [tex]\( x^{16} \)[/tex] and [tex]\( x^4 \)[/tex] terms. With the highest degree term being [tex]\( x^{16} \)[/tex], this equation is not quadratic.
From the analysis, we can see that the first equation, [tex]\( 4(x-2)^2 + 3x - 2 + 1 = 0 \)[/tex], simplifies to [tex]\( 4x^2 - 13x + 15 = 0 \)[/tex], which is a quadratic equation. Therefore, the equation that is quadratic in form is:
[tex]\[ \boxed{4(x-2)^2 + 3x - 2 + 1 = 0} \][/tex]
or
[tex]\[ \boxed{1}. \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.